
Sitecore CMS 6.5-6.6
Sitecore Item Web API 1.0.0 Developer's Guide Rev: November 28, 2012

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Sitecore CMS 6.5-6.6

Sitecore Item Web API 1.0.0
Developer's Guide
A developer's guide to the Item Web API.

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 2 of 18

Table of Contents

The Item Web API Hook ... 3

Query String Parameters .. 4

Item Id .. 4

Item Version .. 4

Database ... 4

Language ... 5

Fields ... 5

Payload .. 5

Scope ... 6

Query ... 6

Page .. 7

Item Manipulation .. 8

Retrieving Existing Items ... 8

Creating New Items ... 8

Updating Existing Items ... 9

Deleting Existing Items .. 10

Creating Media Items .. 10

Security ... 11

User Authentication ... 12

Credentials Encryption .. 13

Special Requests .. 14

Getting Rendered HTML ... 14

Extending the Sitecore Item Web API ... 16

Sitecore Item Web API 1.0.0 Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 3 of 18

The Item Web API Hook

Developers use the Sitecore Item Web API to manipulate the content items in Sitecore through HTTP
requests. The API gives access to content through items paths, IDs, and Sitecore queries. This service
produces output in JSON format and is both highly customizable and optimized to support a minimum
number of requests.

A web request to the Sitecore Item Web API must start with the special hook in the following format:

/-/item/v<version> where <version> is a number of the service version.

The current version of the Item Web API is 1, therefore the only valid hook is /-/item/v1.

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 4 of 18

Query String Parameters

The following sections describe the query string parameters that you can use in an Item Web API
request:

Item Id

The sc_itemid parameter specifies the ID of the content item to be resolved by the Item Web API

request.

Example:
http://<host_name>/-/item/v1/?sc_itemid={A60ACD61-A6DB-4182-8329-

C957982CEC74}

Item Version

The sc_itemversion parameter specifies the version number of the content item to be resolved by the

Item Web API request.

Example:
http://<host_name>/-/item/v1/?sc_itemid={A60ACD61-A6DB-4182-8329-

C957982CEC74}&sc_itemversion=2

If you do not specify the sc_itemversion parameter or the specified version does not exist, the latest

version of the item is retrieved.

You should not use the sc_itemversion parameter:

 if you want a set of items to be resolved by a query in the Item Web API request.

 to add or delete a particular version or an item.

Database

The sc_database parameter specifies the database that contains the content items that you want to

manipulate.

Example:
http://<host_name>/-/item/v1/?sc_itemid={A60ACD61-A6DB-4182-8329-

C957982CEC74}&sc_database=master

If you do not specify the sc_database parameter, the current context database is used.

Note
Only members of the Sitecore Client Users role can switch databases.

Sitecore Item Web API 1.0.0 Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 5 of 18

Language

The language parameter specifies the context language for the Item Web API request.

Example:
http://<host_name>/-/item/v1/?sc_itemid={A60ACD61-A6DB-4182-8329-

C957982CEC74}&language=da-DK

The Sitecore default language parameter sc_lang stores the language value in a cookie. However, the

language parameter is stateless. This means that the language parameter only sets the language for

the current request and subsequent requests are not affected.

If the language parameter is not specified, the language cookie, that might have been previously set,

has an effect.
To use the default language and ensure that the language specified in the cookie is not used, specify it as

?language=default.

You should not use the language parameter to add or delete the language versions of an item. This

functionality does not exist in the Item Web API.

Fields

The fields parameter specifies the fields that are added to the result set. If it is not specified, the

content fields are added. The field can be specified either by the field name or by the field ID.

Note
The field names and IDs are not case sensitive.

Examples:
fields=Text

fields=tExT

fields={A60ACD61-A6DB-4182-8329-C957982CEC74}

fields=Title|Text

fields=tItLe|TeXt

fields=Title|{A60ACD61-A6DB-4182-8329-C957982CEC74}

fields={75577384-3C97-45DA-A847-81B00500E250}|Text

fields={75577384-3C97-45DA-A847-81B00500E250}|{A60ACD61-A6DB-4182-8329-

C957982CEC74}

The field values in the response are raw values. The raw values are in plain text format and are taken
from the corresponding Sitecore database.

To retrieve data from a Binary Large Object (BLOB) field, you should add the extractblob=1 query

parameter to the Item Web API request. The BLOB data in the response is Base64 encoded.

Payload

You can use the payload parameter to change the set of item fields in the Item Web API response. An

item can contain a lot of fields. Even if its template does not contain any fields, the item still contains the

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 6 of 18

standard fields. If you do not need to retrieve all the item fields, you can reduce the network traffic by just
retrieving the item fields that you need, such as ID, Name, DisplayName, FullPath, and TemplateName.

The payload parameter accepts the following values:

 min — no fields are returned in the service response.

 content — only content fields are returned in the service response.

 full — all the item fields, including content and standard fields, are returned in the service
response.

Examples:
payload=min

payload=content

payload=full

Note
The payload parameter works when no fields were specified. If fields are explicitly specified with the

fields parameter, the payload parameter is ignored.

Scope

The scope parameter specifies the set of the items that you are working with.

You can use the following values to define the scope:

 s for self — default if nothing is specified

 p for parent

 c for children

Examples:

scope=p

scope=c|p

scope=s|p|c

Note
The order of the values is important because the result set reflects the specified order.

Query

To resolve items, you can use Sitecore queries as HTTP query parameters in the Item Web API

requests. The syntax of the query is the same as the one that is used in the Sitecore API. The Item Web

API transfers the value of the query parameter directly to the corresponding part of the Sitecore API.

The following examples show how to specify the required scope in Sitecore Query and in Sitecore Fast
Query:

 query=/Sitecore/Content/* – a regular Sitecore query is used.

 query=fast:/Sitecore/Content/* – a fast Sitecore query is used.

For more information about how to use Sitecore Fast Query, see the manual Using Sitecore Fast Query.

Sitecore Item Web API 1.0.0 Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 7 of 18

The item set, that is resolved by the query, is affected by the scope parameter.

Example:
http://<host_name>/-/item/v1/?scope=c&query=/sitecore/content/home/*

In this example, the query resolves the immediate children of the Home item. Since the value of the

scope parameter is c, which stands for the children of the resolved items, only Home item’s

grandchildren are included in the request output.

Note
If you want to use Sitecore query with special parameters, for example:

query=/sitecore/content/home//*[@@templatekey='sample item']

you must encode this query first. To encode a query, use the URL Decoder / Encoder online tool that you
can find on the http://meyerweb.com/eric/tools/dencoder/ page.

Page

If the response contains numerous result items, you can use paging to obtain parts of the whole result set
as pages. You can iterate through the whole result set by pages. A page has a number and a size. The
number is the index of a given page in a set that starts with 0. The page size is the number of the result
items that are presented in the page.

To retrieve a specific page, you must specify the following HTTP parameters:

 page — an integer value which is greater than or equal to 0.

 pageSize — an integer value which is greater than 0.

Examples:

 page=0&pageSize=10 — returns the first page that contains 10 or less items.

 page=5&pageSize=5 — returns the sixth page that contains 5 or less items.

http://meyerweb.com/eric/tools/dencoder/

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 8 of 18

Item Manipulation

The following sections describe how to use the Item Web API requests to retrieve, create, update, and
delete items.

Retrieving Existing Items

To retrieve existing items, you can use the HTTP GET method in your Item Web API request.

You can use any of the following options to retrieve items:

 Specifying the item id:
http://<host_name>/-/item/v1/?sc_itemid={A60ACD61-A6DB-4182-8329-

C957982CEC74}

 Specifying the query:
http://<host_name>/-/item/v1/?query=/sitecore/content/*

 Specifying the item path:
http://<host_name>/-/item/v1/sitecore/content/home

When you specify the path to the item, remember that the Item Web API supports Sitecore’s site resolving

mechanism. For example, the http://<host_name>/-/item/v1/sitecore/shell request

retrieves the start item of the managed shell site, not the /sitecore/shell item of the managed

website.

Creating New Items

To create a new item, you can use the HTTP POST method in an Item Web API request.

The required query string parameters are:

 template — specifies the template that the new item is based on. It either accepts the template

ID or the relative template path. For example, Sample/MyTemplate.

 name — specifies the name of the item being created. It must be a valid Sitecore item name.

If you are creating an item from a branch, you must only pass the branch ID.

To create an item called MyItem that is based on the Sample Item template in the master database, use

a URL in the following format:
http://<host_name>/-

Sitecore Item Web API 1.0.0 Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 9 of 18

/item/v1/sitecore/Content/Home?name=MyItem&template=Sample/Sample

Item&sc_database=master

You can also use the sc_itemid or the query parameter to specify the parent of the item that you are

creating.

If the resolved scope contains more than one item, for example, in the Sitecore query or in the scope

HTTP parameter, the new item is created as a child of the first item in the scope.

Since the order of the items in the scope is unpredictable, we recommend that the scope only contains
the item for the creation operation. This means that you should avoid situations when there is more than
one item resolved for the Create operation.

Example:
http://<host_name>/-/item/v1/?query= /sitecore/Content/Home//*&

name=MyItem&template=Sample/Sample Item&sc_database=master.

In this example, all the descendants of the Home item are resolved and it is hard to know under which of
the descendants the new item is created.

You can create a new item and update its fields at the same time by specifying the field values in the
POST request body in the following formats:
<fieldName1>=<fieldValue1>&<fieldName2>=<fieldValue2>&<fieldNameN>=<fieldValu

eN>

Or
<fieldID1>=<fieldValue1>&<fieldID2>=<fieldValue2>&<fieldIDN>=<fieldValueN>

To update the item fields, you must add the Content-Type=application/x-www-form-

urlencoded HTTP header to the request.

When you update an item, the response is in the same format as when you read an item. You can also

use the fields and payload HTTP parameters to customize the response.

Important
Due to a known issue, that is related to the WebDAV functionality in Sitecore, and that exists in Sitecore

CMS versions prior to 6.5.0 Update 5, you must disable the WebDAV.Enabled setting in the

Sitecore.WebDAV.config file to be able to use the UPDATE and DELETE operations.

Updating Existing Items

The HTTP PUT method is used to update existing items. This affects all items in the resolved scope. To

update the item fields in the scope, you must specify the field data in the request body in the standard
format.

The field values can contain special characters and should therefore be encoded when they are passed
to the Item Web API.

You must specify the fields in the PUT request body in any of the following formats:

 <fieldName1>=<fieldValue1>&<fieldName2>=<fieldValue2>&<fieldNameN>=<fiel
dValueN>

 <fieldID1>=<fieldValue1>&<fieldID2>=<fieldValue2>&<fieldIDN>=<fieldValue

N>

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 10 of 18

If an item contains a field with the specified name, the field is updated with the value that you specify.

Note
The field names are not case sensitive and the update operation returns a collection of the updated items.

When you want to update a field, you must add the Content-Type=application/x-www-form-

urlencoded HTTP header to the request.

Deleting Existing Items

The HTTP DELETE method is used to delete existing items. It affects all items in the resolved scope. The

response contains the number of deleted items and their IDs. This response does not include any
descendent items that were deleted — it does not count them or list their IDs.

Creating Media Items

The HTTP POST method is used to upload the media files in the Media Library. You can create several

media items at the same time.

This operation does not use the items in the scope. However, it uses the context item as a parent for the
media items that are being created. The context item is resolved by its path or ID and should be the
Media Library root or one of its descendants.

The only parameter is the name of the media items to be created — name HTTP parameter. If you upload

several files at once, unique names based on the specified name of each item are applied to the media
items. You do not need to specify the template because the Media Manager uses the content type of the
uploaded file to resolve it.

Right now, the Item Web API can only create unversioned media items. You cannot use the Item Web
API to create a versioned media item.

The response contains the created media items in the same format as they are returned by the read item
operation.

When you upload a media item, you must add the Content-Type=multipart/form-data HTTP

header to the request.

Sitecore Item Web API 1.0.0 Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 11 of 18

Security

The Sitecore Item Web API supports:

 The standard Sitecore security system.

 Advanced Item Web API security.

By default, the Item Web API is disabled for all managed sites. Before you enable it, you must decide
which security model is appropriate for each particular managed site in the Sitecore solution.

To set the security model for a managed site open the Sitecore.ItemWebApi.config file, and

modify the following section:

<site name="<SiteName>">

 <patch:attribute name="itemwebapi.mode"><Mode></patch:attribute>

 <patch:attribute name="itemwebapi.access"><Access></patch:attribute>

 <patch:attribute name="itemwebapi.allowanonymousaccess"><AllowAnonymousAccess>

 </patch:attribute>

</site>

where:

 The <Mode> attribute can take the following values:

o Off — the Item Web API is turned off.

o StandardSecurity — the Item Web API is turned on and the default Sitecore security

model is used.

o AdvancedSecurity — the Item Web API is turned on, and the default Sitecore security

model is extended with the requirement to set remote:fieldread access right for content

fields.

 The <Access> attribute can take the following values:

o ReadOnly — to only allow the READ operation.

o ReadWrite — to allow the CREATE, READ, UPDATE, and DELETE (CRUD) operations.

 The <AllowAnonymousAccess> attribute can be set to true or false. It specifies if there is

access for the non-authenticated user.

Examples:

<site name="shell">

 <patch:attribute name="itemwebapi.mode">StandardSecurity</patch:attribute>

 <patch:attribute name="itemwebapi.access">ReadWrite</patch:attribute>

 <patch:attribute name="itemwebapi.allowanonymousaccess">false</patch:attribute>

</site>

<site name="website">

 <patch:attribute name="itemwebapi.mode">AdvancedSecurity</patch:attribute>

 <patch:attribute name="itemwebapi.access">ReadOnly</patch:attribute>

 <patch:attribute name="itemwebapi.allowanonymousaccess">true</patch:attribute>

</site>

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 12 of 18

For content delivery servers, we recommend the following configuration settings:

 <Mode>=AdvancedSecurity

 <Access>=ReadOnly

 <AllowAnonymousAccess>=false

The default Sitecore security model has been extended to support the Item Web API requests:

1. The Field Remote Read field-level access right was introduced.

In contrast with the Field Read access right, the Field Remote Read access right is resolved as

Allowed if it is explicitly allowed for a specific field. By default, it is Denied.

2. If the Item Web API request targets a site within the domain of Sitecore security, for example
shell site, the client should be logged in the same domain. Otherwise, the Item Web API responds

with a Request forbidden 403.

The Item Web API also responds with Request forbidden 403 if:

o An anonymous client makes a request to a site that requires a login.

o The client making the request has not been assigned the Site Enter access right.

User Authentication

The user credentials should be passed in the headers of the HTTP request as follows:

 X-Scitemwebapi-Username — the user name

 X-Scitemwebapi-Password — the user password

Sitecore Item Web API 1.0.0 Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 13 of 18

The authentication is stateless, which means that the user credentials are passed with each request.

In the Item Web API, you can use cookies for authentication. These authentication cookies are useful
when using the API in the Sitecore backend.

This only works when the user has already been given the authentication cookies. However, the Item
Web API does not contain a method that allows the users to log in and receive the authentication cookies.

Note
When you use the authentication cookies, you must not pass the credentials in the HTTP headers.

Credentials Encryption

The Sitecore Item Web API supports the encryption of the credentials.

To encrypt the credentials, you should:

1. Use the getpublickey action to get the Item Web API encryption public key:

http://<host_name>/-/item/v1/-/actions/getpublickey.

The key is then returned in XML DSig format as plain text.

2. Use the RSA algorithm to encrypt both of the user name and the password with a public key.
These encrypted credentials should be in UTF-8 format and Base64 encoded.

3. Set the X-Scitemwebapi-Encrypted HTTP header to 1 in the request.

If you use an SSL connection, the credentials must not be encrypted. The server takes care of header
encryption. We recommend that you use an SSL connection instead of custom encryption.

By default, the Item Web API server uses a 1024-bit encryption key. In the

Sitecore.ItemWebApi.config file, you can also use the keyLength setting to specify the value of

the RSA encryption provider.

The private encryption key is stored in the machine key storage. The name of the default key container is

SCWEBAPIKEYCONTAINER. You can use the keyContainer property of the RSA encryption provider to

change the name of the default key container.

The Sitecore Item Web API uses PKCS#1 v1.5 padding for encryption and decryption. For more

information, see http://msdn.microsoft.com/en-
us/library/system.security.cryptography.rsacryptoserviceprovider.encrypt.aspx

http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.encrypt.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.encrypt.aspx

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 14 of 18

Special Requests

The Item Web API also handles special requests that are not related to CRUD operations. These
requests have response formats that are different from the regular Item Web API requests. The response
format and the content type vary according to the operation.

A special request must have the following format:
http://<host_name>/<webapi_hook>/<special_request_hook>/<action_name>[?<optio

nal_parameters>]

Where:

 <special_request_hook> can be assigned to -/actions

 <optional_parameters> can be assigned to
[<key1>=<value1>][&<key2>=<value2>]...[&<keyN>=<valueN>]

 <optional_parameters> is a regular HTTP query string.

 <action_name> is the name of the operation. The action name is not case sensitive.

Example:
http://<host_name>/-/item/v1/-

/actions/GetRenderingHtml?database=master&language=en&renderingId={493B3A83-

0FA7-4484-8FC9-4680991CF743}&itemId={110D559F-DEA5-42EA-9C1C-

8A5DF7E70EF9}&itemVersion=7&a=1&b=2&c=3

GetRenderingHtml is the action name. The content type of the response to a special request varies

according to the operation type.

Getting Rendered HTML

The GetRenderingHtml request gets the output HTML of a rendering.

The required parameters are:

 sc_database — the database that contains the rendering and source items.

 renderingId — the ID of the rendering item.

 sc_itemId — the ID of the source item.

The optional parameters are:

 sc_itemversion — the version of the source item. If not specified, the Version.Latest

value is used.

 language — the language of the rendering and the source items. If not specified, the default

language is used.

http://localhost/-/webapi/v1/-/actions/GetRenderingHtml?database=master&language=en&renderingId=%7b493B3A83-0FA7-4484-8FC9-4680991CF743%7d&itemId=%7b110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9%7d&itemVersion=7&a=1&b=2&c=3
http://localhost/-/webapi/v1/-/actions/GetRenderingHtml?database=master&language=en&renderingId=%7b493B3A83-0FA7-4484-8FC9-4680991CF743%7d&itemId=%7b110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9%7d&itemVersion=7&a=1&b=2&c=3
http://localhost/-/webapi/v1/-/actions/GetRenderingHtml?database=master&language=en&renderingId=%7b493B3A83-0FA7-4484-8FC9-4680991CF743%7d&itemId=%7b110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9%7d&itemVersion=7&a=1&b=2&c=3
http://localhost/-/webapi/v1/-/actions/GetRenderingHtml?database=master&language=en&renderingId=%7b493B3A83-0FA7-4484-8FC9-4680991CF743%7d&itemId=%7b110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9%7d&itemVersion=7&a=1&b=2&c=3

Sitecore Item Web API 1.0.0 Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 15 of 18

All the other query string parameters are recognized as the rendering parameters, such as a=1&b=2&c=3

in the following example:
http://<host_name>/-/item/v1/-

/actions/GetRenderingHtml?sc_database=master&language=en&renderingId={493B3A8

3-0FA7-4484-8FC9-4680991CF743}&sc_itemid={110D559F-DEA5-42EA-9C1C-

8A5DF7E70EF9}&a=1&b=2&c=3

Note

The database, itemId, itemversion, and sc_lang parameter names are reserved keys in this

version of the Item Web API and you cannot use them as rendering parameters.

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 16 of 18

Extending the Sitecore Item Web API

Most of the Sitecore Item Web API features are implemented using pipelines. You can remove existing
pipeline processors, override default processors, and add your own processors to customize the Item
Web API, without changing the default functionality.

The Item Web API uses the following pipelines:

itemWebApiRequest

This is the main pipeline that represents the lifecycle of an Item Web API request. You can use this
pipeline for many purposes, such as modifying the item set for which the CRUD operation is going to be
executed, and producing the output in a different format.

The following snippets illustrate the class and the processor that are used to produce the output in XML
format.

The XMLSerializer class:

internal class XmlSerializer : ISerializer

{

 public string SerializedDataMediaType

 {

 get

 {

 return "text/xml";

 }

 }

 public string Serialize(object value)

 {

 return Serialize((Dynamic)value).ToString();

 }

 private XElement Serialize(Dynamic value)

 {

 var element = XElement.Parse("<object/>");

 foreach (var property in value)

 {

 var propertyName = string.Format("_{0}", property.Key);

 propertyName = propertyName.Replace("{", "");

 propertyName = propertyName.Replace("}", "");

 propertyName = propertyName.Replace(" ", "-");

 var child = XElement.Parse(string.Format("<{0}/>", propertyName));

 var array = property.Value as Dynamic[];

 if (array != null)

 {

 foreach (var item in array)

 {

 child.Add(Serialize(item));

 }

 }

 else if (property.Value is Dynamic)

 {

Sitecore Item Web API 1.0.0 Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 17 of 18

 child.Add(Serialize((Dynamic) property.Value));

 }

 else

 {

 child.Add(property.Value.ToString());

 }

 element.Add(child);

 }

 return element;

 }

}

The SwitchToXmlSerializer processor:

public class SwitchToXmlSerializer : RequestProcessor

{

 public override void Process([NotNull] RequestArgs arguments)

 {

 Context.Current.Serializer = new XmlSerializer();

 }

}

The SwitchToXmlSerializer processor must precede the default SerializeResponse processor in

the Sitecore.ItemWebApi.config file.

itemWebApiCreate

This pipeline runs the create item operation. When the item is created, it invokes the itemWebApiRead

pipeline to read the item's fields and properties.

itemWebApiRead

This pipeline runs as part of the read item operation. To get the item fields and properties, this pipeline

invokes the itemWebApiGetFields and the itemWebApiGetProperties pipelines respectively.

itemWebApiUpdate

This pipeline runs as part of the update item operation. When item is updated, it invokes the

itemWebApiRead pipeline to read the updated item's fields and properties.

itemWebApiDelete

This pipeline runs as part of the delete item operation.

itemWebApiGetFields

This pipeline retrieves the fields in an item.

The following snippet illustrates the RemoveSharedFields processor that is used to remove all the

shared fields from the response:

public class RemoveSharedFields : GetFieldsProcessor

{

 public override void Process(GetFieldsArgs arguments)

 {

 foreach (var field in arguments.Fields)

 {

 if (field.Shared)

 {

 arguments.RemoveField(field);

 }

 }

 }

}

Sitecore CMS 6.5-6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 18 of 18

The itemWebApiGetFields pipeline should come after the default GetFields processor in the

Sitecore.ItemWebApi.config file.

itemWebApiGetProperties

This pipeline retrieves the item's properties.

The following snippet illustrates the CustomizeProperties processor that is used to extend the Item

Web API response with custom item properties, such as IsClone:

public class CustomizeProperties : GetPropertiesProcessor

{

 public override void Process(GetPropertiesArgs arguments)

 {

 var item = arguments.Item;

 var properties = arguments.Properties;

 properties.Add("IsClone", item.IsClone);

 }

}

The CustomizeProperties processor should come after the default GetProperties processor in the

Sitecore.ItemWebApi.config file.

	The Item Web API Hook
	Query String Parameters
	Item Id
	Item Version
	Database
	Language
	Fields
	Payload
	Scope
	Query
	Page

	Item Manipulation
	Retrieving Existing Items
	Creating New Items
	Updating Existing Items
	Deleting Existing Items
	Creating Media Items

	Security
	User Authentication
	Credentials Encryption

	Special Requests
	Getting Rendered HTML

	Extending the Sitecore Item Web API

