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origin of missing values

non-response

One of the most important cause for data incompleteness is the

non-response.

total nonresponse (TNR):

sample units where no information is available

partial nonresponse(PNR):

some questions are not answered

intermediate cases

some sections of the questonnaire empty, all questionnaire

empty but info available from external (historical) source, ...
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origin of missing values

total non-response

Causes:

non-contact

refusal

...

typically (but not always) treated via weight adjustment
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partial non-response

partial non-response

Causes:

information not available to respondents

ambiguous questions (questionnaire defect)

�friction� along questionnaire

...

typically (but not always) treated via imputation of missing values



analysis of incomplete data in statistical surveys

partial non-response

remark

Identi�cation of PNRs may be not obvious. E.g., sometimes not

reported values are to be interpreted as �zeros� rather than as

missing values. This problem can be alleviated with suitable

strategies in the data collection phase (for instance by using

di�erent codes for zero and missing). However, often some ad hoc

procedure (possibly based on statistical modeling) for distinguishing

zeros and missing values is necessary.



analysis of incomplete data in statistical surveys

partial non-response

missing deriving from editing

Missing values can derive by dropping values that have been

classi�ed as erroneous in the editing phase. This is often the case

when automatic procedures for random error localization are used.

For instance, if a �balance edit� involving di�erent numerical items

is violated, one particular item is �agged as erroneous, it is

canceled.
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partial non-response

data integration

Missing information can be originated by data integration from

di�erent sources. For instance, if a unique dataset is created based

on data from two di�erent surveys A and B, and some variables are

not surveyed in both surveys.

X : variables only in A

Y : variables only in B

Z : variables in both A and B

Interest is on the joint distribution of X,Y, Z



analysis of incomplete data in statistical surveys

partial non-response

nonresponse classifications

Two main aspects of non-response are:

mechanism

analyzing (possibly modeling) non-response mechanism is

important in order to have valid inferences.

pattern

sometimes pattern depends on mechanism. Applicability of

di�erent methods depend on nonreponse pattern .
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partial non-response

quasi randomization

One possible approach to the inference on incomplete data is

based on considering non-response as a second phase in

sampling. However, the nonresponse mechanism is usually not

under control of the researcher.

Thus, validity of inferences based on respondents strongly

depends on validity of assumptions made on non-response

mechanism.
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partial non-response

random mechanisms involved

nŶNY

rŶ
U 

Population 

S 
Sample R 

Respondents 

Design nonresponse 
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partial non-response

example: simple random sampling

Y = target variable for population of N units

Ŷ n sample mean (estimator of population mean) on a sample of n
units:

Ŷ =

∑n
i=1 yi
n

If there are r respondents we use the estimator Ŷ r computed on r
units instead of n.
is the estimator Ŷ r unbiased?

is it possible to estimate its precision?

it depend on the non-response mechanism.
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partial non-response

example: simple random sampling (2)

If the set of respondents can be considered as a simple random

sample of the units included in the sample the estimator Ŷr is
unbiased. It is a simple �expansion estimator� based on r units
instead of n units. Of course the precision is lower since there is an

increase in variance of ∼ n/r.
If the hp of SRS for the (non)response is true the nonresponse

mechanism is said to be completely at random (MCAR - Missing

Completely at Random)
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nonresponse mechanisms

notations

Y = (Yobs,Ymis) data matrix n× p

Yobs observed data

Ymis missing data

M matrix n× p of NR indicators: Mij = 0 if variable Yj is

observed on the i-esima unit and 1 otherwise
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nonresponse mechanisms

nonresponse mechanisms

MCAR (Missing Completely At Random)

P (M|Y) = P (M|Yobs,Ymis) = P (M)

MAR (Missing At Random)

P (M|Yobs,Ymis) = P (M|Yobs)

MNAR (NMAR) (Missing Not At Random)

P (M|Y) cannot be simpli�ed as in the previous cases.
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nonresponse mechanisms

intuitively ..

MCAR Probability that Ymis is missing does not depend on Y (the

respondents are a (simple random) sub-sample of the original

sample).

MAR Probability that Ymis is missing depends only on Yobs. (not

on the missing values)

NMAR Probability that Ymis is missing depends on Ymis ALSO upon

conditioning on Yobs.



analysis of incomplete data in statistical surveys

nonresponse mechanisms

example

X=class of employees classes: 1-10; 11-50; 51-100; > 100

Y= turnover

Assume that X is always observed, but Y is a�ected by

nonresponse. If nonresponse probability P (M) is independent of Y ,
then the mechanism is MCAR. If, for each employee class,

nonresponse probability is constant, but there are di�erent

probabilities in di�erent classes, then the mechanism is MAR.

Finally, if even within each class, nonresponse prob. depends on

turnover (Y ), then we have NMAR.

If we wont to estimate the mean (or total) of Y , we can get

unbiased estimators only in the �rt two cases (MCAR and MAR)
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nonresponse mechanisms

example(cntd)

n: sample size
nj : size of employees classes j (j = 1, . . . , 4)
r: number of respondents
rj : number of respondents in class j
yi: turnover of ith unit(enterprise)

Let:

Ŷ n =
1

n

n∑
i=1

yi Ŷ r =
1

r

r∑
i=1

yi Ŷ rj =
1

rj

rj∑
i=1

yi

all data mean, respondent mean, respondent mean in class j,
respectively
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nonresponse mechanisms

example(cntd)

Estimators:

complete data: Ŷ n

MCAR: Ŷ r

MAR: 1
n

∑
nj Ŷ rj (preferable also with MCAR)

NMAR: ?
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treatment

adjusting for nonresponse

In the MAR case we have re-weighted units separately in di�erent

adjustment cells (employee classes) to reduce bias. The idea is

similar to that used in sampling (randomization): If the inclusion

probability for the unit i in the sample is πi, each unit �represents�

wi = π−1i units in the target population. wi = sampling weight.

Sampling weight are known because they are determined by the

sampling scheme (inverse of inclusion probabilities). Nonresponse

can be viewed as a n additional selection process where, however

probabilities are unknown (quasi randomization)
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treatment

adjusting for nonresponse (cntd)

If nonresponse probs pri were known for each sampled unit i, we
could calculate the probability:

π̃i = Pr ( i sampled and i respondent )= Pr( i sampled) ×
× Pr( i respondent | i sampled) = πi × pri.

Thus the adjusted weight would be:

π̃−1i =
1

πi × pri
.
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treatment

adjusting for nonresponse (cntd)

Usually, response probabilities are unknown. Thus, in practice one

to estimate them using the available auxuliary information. In the

previous example we have made the assumption that the response

probability depends only on the class of employees and we have

estimated this probability with rthe response rate in each class:

pri = rj/nj

where j is the class of unit i. If all the sample weights are equal
(w), this hypothesis leads to the estimator:

(

n∑
i

w)−1
4∑
j

rj∑
i

w
nj
rj
yi =

1

n

∑
nj Ŷ rj
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treatment

complete case (cc) analysis

In the example, in case MAR, we used the auxiliary variable

�class of employees� to compensate for the di�erence between

respondents and nonrespondents in terms of the target

variable (turnover).

If the mean turnover has been estimated through the mean on

the whole population instead of separately for di�erent classes

we would have obtained a biased estimate. For Instance, if

enterprises with low value of turnover have lower propensity to

response, we over-estimate the turnover, because the

respondents have higher values of turnover.

in general, analysis based only on units where all variables are

observed is said Complete Cases (CC) analysis.
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treatment

cc analysis
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treatment

advantages of cc

simple (standard methods and software)

no arti�cial data (imputation)

ok in case of small number of missing values and MCAR

univariate estimates are comparable, in fact they are computed

on the same cases.
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treatment

drawbacks of cc

if nonresponse in not MCAR estimates are biased

even with MCAR, some information (incomplete cases) is not

used �> loss of precision in the estimates
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treatment

example(1)

Let (X,Y ) be Gaussian r.v.s. Assume that we have a sample of size

n where X is always observed, Y has n− r missing values (MCAR).

We wont to estimate the expected value µy of Y . Consider the
estimator Ȳr =

∑r
i=1 yi, the mean of Y over the r respondents.

If data were complete, we would use the estimator Ȳn =
∑n

i=1 yi.
The ratio between the variances of the two estimators is: n/r, so
for instance, if the nonresponse rate is 50%, missing values cause

the �rst variance become twice the second one.
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treatment

example(2)

If instead of discarding the incomplete records, we use all the

available information (i.e., also the X-values), we can obtain a more

e�cient estimator Ȳr. For instance the MLE estimator of µy is:

µ̂yML = µ̂y = Ȳr + β̂r(X̄n − X̄r)

where β̂r is the estimate of the regression coe�cient of Y on X.

In this case we have:

V ar(µ̂yML)/V ar(Ȳr) ≈ 1− n− r
n

ρ2
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treatment

conclusion

If ρ2 → 0, then the two variances are equal, while if ρ2 → 1 the

variance ratio goes to r/n, i.e., we have the same gain in e�ciency

as using the estimator Ȳn instead of Ȳr

This example shows how using auxiliary information can remarkably

improve the precision of the estimate if it is related to the target

population parameter (in the example ρ close to 1).
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treatment

bias with cc

Consider the population mean µ. We can express it in terms of the

respondent mean µr and the non-respondent mean µnr as:

µ = πrµr + (1− πr)µnr
thus the bias is

µr − µ = (1− πr)(µr − µnr)

where πr is the respondent proportion. Thus, the estimate is
unbiased only with MCAR (µr = µnr)
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treatment

alternatives

analysis on �available cases� (AC)

replacing missing values with arti�cial values (imputation)

analysis using all data (complete and incomplete) ( e.g. EM

algorithm)
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treatment

available cases

For each parameter of interest, one uses all the statistical units

where the relevant variables are present. For example, we

could use all the units where the variables X and Y are

observed (but perhaps other variables are missing) to estimate

the correlation coe�cient ρxy.

This method might produce inconsistent results: e.g., in each

entry of the covariance matrix is estimated independently of

other entries, the estimate could result in a non-positive

de�nite matrix.
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treatment

York missing data symposium 1 1 
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treatment

using all data

this approach includes estimation methods for incomplete data and

imputation.

estimation with incomplete data

Under assumption of some parametric model it is sometimes
possible to estimate (e.g. via ML) the parameters using also
incomplete data. A popular technique is the EM algorithm.

imputation

the dataset is �completed� to obtain a rectangular dataset
(�without holes�), replacing missing values with plausible
values (imputed).
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treatment

modeling

A parametric model has the advantages of being parsimonious of

making the research assumptions explicit. On the other hand it is

often di�cult to specify a model that �ts well data (e.g., zero

in�ation, non gaussian data, etc.). In the context of o�cial

statistics one is usually interested in �nite population quantities

(e.g., totals or means), rather than in distribution parameters.
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treatment

imputation

Missing values are imputed with �plausible� values so that standard

methods and software can be applied to the completed dataset.

advantages: does not require special methodology for analysis.

drawbacks: an additional source of uncertainty is introduced. In the

analysis phase, one should take into account the fact that imputed

data are not really observed (incorporate in the estimation process

the source of variability dure to nonresponse). Also, di�erent

imputation methods may be appropriate for di�erent estimations

objectives.
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imputation methods

imputation methods

non parametric (hot-deck, regression trees...)

parametric (Regression, EM,...)

mixed (Predictive Mean Matching,...)

semi-parametric (mixture modeling,..)
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imputation methods

simple methods (1)

mean imputation. Missing values for each variable are imputed

with the variable mean computed on the observed values.

Often the population is partitioned into classes (imputation

cells) and for each unit to be imputed means are computed

within the class the unit belongs to. Within-cell imputation is

similar to class-re-weighting within classes in sample theory.

regression-based imputation. Imputed values are predictions

from a regression model based on some set of covariates.

Mean imputation is a particular case. One can add a random

residual to the predictive mean.
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imputation methods

simple methods (2)

hot-deck imputation. The value to be imputed for an

incomplete record is taken from a �similar� respondent in the

same survey. This is a very common approach in the context

of o�cial Statistics. =⇒ �exibility but di�cult to make

assumptions explicit.

cold-deck imputation. Similar to the previous method, but

imputed values are taken from a di�erent survey.
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imputation methods

mean imputation(1)

May be appropriate if missing are MCAR (respondents are similar

to non-respondents) and quantities to be estimated are means or

totals (linear quantities). ȳr: mean over r respondents out of the n
sampled units. with mean imputation:

1

n

(
r∑
i

yi +

n∑
r+1

ȳr

)
=

1

n
(rȳr + (n− r)ȳr) = ȳr

since mechanism is MCAR ȳr is an unbiased estimate of ȳn.
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imputation methods

mean imputation(2)

If some non-linear parameter is to be estimated, e.g., the variance,

mean imputation is not appropriate, in fact, using imputed data we

would obtain:

sr(nr − 1)/(n− 1).

If sr is a consistent estimate of the population variance, the

estimate resulting from mean imputation is biased

(under-estimated) by (nr − 1)/(n− 1). in fact, mean imputation

makes distribution ��at�.
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imputation methods

conditional mean imputation

Using auxiliary information can improve the precision of the

estimates based on imputed data. If strongly predictive covariates

are available one can impute with the conditional mean. Depending

on whether auxiliary variables are categorical or numerical we

obtain respectively:

mean imputation within strata

regression imputation without residual term
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imputation methods

mean imputation within cells(1)

If population is divided into J cells (strata), and ȳjr is the mean of

variable Y over the rj respondents in cell j, the estimate of the
mean of Y is:

ȳwc =
1

n

J∑
j=1

 rj∑
i=1

yij +

nj∑
i=rj+1

ȳjr

 =
1

n

J∑
j=1

nj ȳjr

If (on average) ȳjr = ȳj (MCAR) the estimator is unbiased. Note

the similarity with strati�cation in sampling theory.
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imputation methods

mean imputation within cells(2)

the gain deriving from imputing within cells is:

V (Ȳ )− V (Ȳwc) = n2
1− r/n

r

J∑
j=1

nj
n

(Ȳj − Ȳ )2

The di�erence is large if di�erences between the cell means and

the overall mean is large.
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imputation methods

imputation via regression without residuals
(1)

Missing are imputed with predictive means from (linear) regression.

Simple case, 2 variables (X,Y ):

yi = α̂+ β̂xi

where α̂ and β̂ are OLS estimates based on the units where both

X and Y are observed.

In case where covariates are dummy variables identifying population

strata, we have mean imputation within cells.
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imputation methods

imputation via regression without residuals
(2)

Imputed values are (conditional) expected values, so although the

resulting estimators of linear quantities are unbiased, the variance is

under-estimated as in the case of mean imputation.

In fact, the regression variance is:

σ2Y |X = σ2Y −
σ2XY

σ2X

in the imputed data Y the residual variance (non explained by the

regression model) is not taken into account.
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imputation methods

imputation via regression with residuals (1)

In order to preserve the data variability, one can add a residual term

ε to the imputed (conditional) mean, e.g., drawing from a normal

distribution with zero mean and variance equal to the residual

regression variance estimated on complete data (both X and Y ).

Estimates based on this imputed dataset are nearly consistent for

all population parameter as far as the imputed values can be

considered random draws from the predictive distribution of missing

given observed data. In the following more complex missing

patterns will be analyzed.
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imputation methods

hot-deck (donor) imputation (1)

With hot-deck imputation values to be imputed for an incomplete

record are taken from another unit (donor) where these values are

available. Donor imputation includes random hot-deck and nearest

neighbor donor. There are several versions: e.g., when many values

are to be imputed they can all be taken from the same donor (joint

imputation) or from di�erent donors(sequential imputation).
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imputation methods

hot-deck (donor) imputation (2)

Again, assume we have to estimate the mean of Y in a population

with N units. Let us assume that from in simple random sample of

n units there are only r respondents. If r = n (no nonresponse)the

(HT)estimator would be:

ȳn =

n∑
i=1

yi
n

with variance:

V ar(ȳn) = (n−1 −N−1)S2
y

Now, we impute n− r missing values via HD.



analysis of incomplete data in statistical surveys

imputation methods

hot-deck (donor) imputation (3)

The mean on the imputed dataset can be expressed as:

ȳHD = {rȳr + (n− r)ȳ∗nr}/n

where ȳr the mean on the observed values

ȳ∗nr =

r∑
i=1

Hiyi
n− r

and Hi is the number of times that yi is selected as a donor

(
∑r

i=1Hi = n− r).
The properties of the estimator depend on the procedure used to

generate the numbers {H1, . . . ,Hr}
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imputation methods

hot-deck (donor) imputation (4)

Assume random hot-deck imputation (with repetition). In this case

the random vector {H1, . . . ,Hr} can be considered as a

multinomial r.v. with parameters (n− r), (1/r, . . . , 1/r) where 1/r
is the selection probability for each unit. So the expected value of

each Hj is (n− r)/r. It follows that the expected value of ȳHD,

given the respondents is ȳr. We know that in case MCAR

respondents can be considered as a SRS of the original sample.

Thus the overall expectation (i.e., with respect to the sampling and

nonresponse) is:

E(ȳHD) = Ȳ

that is the estimator is unbiased.
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imputation methods

hot-deck (donor) imputation (5)

One can easily show that the variance is:

V ar(ȳHD) = (r−1 −N−1)S2
y + (1− r−1)(1− r/n)S2

y/n

Note that the �rst term is the variance of Ȳr in case of SRS of size

r. We conclude that imputation causes increase of the estimate

variability.
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imputation methods

advantages

Estimates concerning parameters of univariate distributions are

approximately unbiased also for non-linear parameters, (e.g.,

the variance).

hot-deck imputation is frequently used in practice in complex

survey because it does not require model assumption (it is also

applicable when data distribution is semi-continuous, e.g.,

zero-in�ation)
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imputation methods

drawbacks

Hot-deck imputation causes decrease of associations among

observed variables and missing variables, because observed values in

the record to be imputed are not taken into account. One can

alleviate the problem by using covariates:

hot-deck within strata

nearest neighbor donor (NND)

As far as the cell de�nition is concerned the problem is the same as

in the case of mena imputation. Let us move on to NND.
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imputation methods

nearest neighbor donor (nnd)

Missing values in a incomplete record (recipient) are replaced with

corresponding observed values in (one of) the most similar

observation(s). Similarity is de�ned on the basis of a distance

function that depends on suitably chosen covariates (matching

variables). Common distance functions:

lp : dp(i, j) =
∑

k |xik − xjk|p (p = 1 Manhattan, p = 2
euclidean)

max d(i, j) = maxk|xik − xjk|

Mahalanobis d(i, j) = (xi − xj)TS−1xx (xi − xj)
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imputation methods

remarks

NND is �asimptotic�: large number of donors should be

necessary (how many?)

how to chose the matching variables?

how to �weight�contributions from di�erent variables to the

distance function?

variables should be standardized. How?

in case of many variables to be imputed, joint imputation is

preferable (rather than sequential)
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imputation methods

more complex methods

Methods describes so far are applicable only with simple missing

patterns (one variable with missing values and an �always observed

variable�). Often data have irregular missing patterns, (�holes�

randomly located ). More general imputation methods are

necessary.
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imputation methods

York missing data symposium 1 1 
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monotone       univariate      file matching 
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imputation methods

nnd with general missing patterns

Extending simple NND is simple: donor pool is composed of

complete records, and the distance distance function is computed

on the basis of the variables which are observed in the current

recipient. For example, if we used the Euclidean distance with

matching variables X1, X2, X3, X4 , and in the ith unit only

variables X1 and X3 are observed, only these two variables will be

used for computing the distance with respect to potential donor j:

d2(i, j) =
√

(xi1 − xj1)2 + (xi3 − xj3)2
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imputation methods

explicit modeling (1)

We can use explicit parametric models in two ways:

Regression: some variables are considered as explanatory and

other as responses

Joint distribution: what is modeled is the joint distribution of

all variables simultaneously

In any case the objective is imputing missing values with plausible

values derived from the assumed model.
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imputation methods

explicit modeling (2)

Methods based on regression are useful when the nonresponse

pattern is univariate or when variables can be splitted into always

observed variables (X) and variables (Y) which are never observed

on a certain subset of sampled units. In this case multiple

regression of Y on X can be used. For general patterns it is better

to estimate joint distribution.
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imputation methods

estimation of joint distribution on cc

in order to estimate parameters θ of the joint distribution of the

data a�ected by missing values, we could use only complete

records. However, this is not optimal for two reasons:

1 loss of precision (big variance)

2 risk of bias if nonresponse is not MCAR
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imputation methods

estimation using incomplete data

We would like to use all the available information, i.e., both

complete and incomplete data. If for instance we use ML

estimation, the involved probability distribution are:

f(Y|θ) : complete data distribution

f(M|Y, ψ) : nonresponse (M) distribution conditional on data

θ and ψ are distinct sets of parameters
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imputation methods

mle

We are interested in the estimates of parameters θ. ψ are

�nuisance� parameters. Can we make inference on θ regardless of

ψ-parameters (i.e., ignoring nonresponse mechanism? The answer

is yes if the nonresponse mechanism is MAR:

f(M|Yobs,Ymis;ψ) = f(M|Yobs;ψ)

i.e., the nonresponse probability, conditional on observed data,

does not depend on the non-observed data.
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imputation methods

estimation under mar

Using Bayes formula one can easily show that MAR hp is equivalent

to assuming that the missing value distribution, conditional on

observed data, is the same for respondents (M = 0) and
non-respondents (M = 1):

f(Ymis|M,Yobs) =
f(M|Yobs,Ymis)f(Ymis|Yobs)

f(M|Yobs)
= f(Ymis|Yobs)
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imputation methods

observed data likelihood (1)

In case MAR, the joint distribution of Yobs and M can be factored

as product of two functions depending on θ and ψ respectively:

f(Yobs,M|θ, ψ) =

∫
f(Yobs,Ymis|θ)f(M|Yobs,Ymis, ψ)dYmis =

= f(M|Yobs, ψ)

∫
f(Yobs,Ymis|θ)dYmis =

= f(M|Yobs, ψ)f(Yobs|θ) ∝ L(θ|Yobs)

L(θ|Yobs) observed data likelihood
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observed data likelihood (2)

Thus, MLEs can be computed by maximizing the observed

likelihood L(θ|Yobs) . However, this is a complex function of the

target parameters maximization is not easy. An important

exception is when the missing pattern is �monotone�, i.e. when

variables Y1, . . . , Yp can be ordered so that for each unit, Yk being

observed implies Yj is also observed ∀j < k. In fact, in this case

the joint distribution can be factored via the �chain rule� as product

of suitable conditional distributions whose parameters can be

independently estimated.
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f(Yobs|θ) =

n1∏
i=1

f(yi1; θ1)

n2∏
i=1

f(yi2|yi1;β2.1) . . .

. . .

np∏
i=1

f(yip|yi1, yi2, . . . , yi(p−1);βp.1,...,p−1)
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example: bivariate normal (1)

V = (X,Y ) gaussian random vector. Distribution parameters:

θ = (µx, σ
2
x, µy, σ

2
2, σxy); X observed on n units; Y observed on

nr < n units; We want to compute MLEs of the model parameters.

The task is easy because the pattern is monotone.
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example: bivariate normal (2)

L(θ|Vobs) ∝ |Σ|−nr/2 exp

{
−1

2

nr∑
i=1

(vi − µ)tΣ−1(vi − µ)

}
×

×σ(n−nr)
x exp

{
− 1

2σ2x

n∑
i=nr+1

(xi − µx)2

}

re-parametrization: φ = (µx, σ
2
x, β0, β1, σ

2
y|x)

L(θ|Vobs) ∝ σ−nx exp

{
− 1

2σ2x

n∑
i=1

(xi − µx)2

}
×

×σ−nr

y|x exp

{
− 1

2σ2y|x

nr∑
i=1

(yi − β0 − β1xi)2
}
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example: bivariate normal (3)

The two expressions are equivalent, but the second one can be more

easily managed to obtain estimates of the parameters. In fact it is

the product of the univariate lik. based on the units 1, . . . , n and

the lik. associated to the regression of Y on X based on the units

1, . . . nr. Since parameters φ1 = (µx, σ
2
x) and φ2 = (β0, β1, σ

2
y|x)

are distinct, inferences can be independent. Also the �rst expression

is the product of two likelihood functions, but the parameters in th

etwo factors are not distinct (µx and σ2x are in both factors).
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example: bivariate normal (4)

MLEs can be easily derived: we use the nr units with Y observed

to estimate via OLS the parameters φ2 = (β0, β1, σ
2
y|x) and all the

units to estimate φ1 = (µx, σx) (µ̂x = x̄; σ̂2x = s2x;). Then, using
re-parametrization formulas:

µ̂y = β̂0 + β̂1µ̂x; σ̂2y = σ̂2y|x + β̂21 σ̂
2
x; σ̂xy = β̂1σ̂

2
x

Replacing the appropriate estimators in the expression for µ̂y we

obtain:

µ̂y = ȳr + β̂1(x̄− x̄r)
where means are computed on respondents.
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general patterns
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em algorithm

When analytic expression for MLEs are not available numerical

routines have to be used. A popular method for maximization of

the incomplete-data likelihood functions is the EM

(Expectation-Maximization) algorithm. it allows one to obtain

MLEs for incomplete data using (iteratively) standard techniques

for complete data. Essentially, it is the formal version of the

iterative procedure consisting of the iterative application of the

following two steps:

1 replace missing values with values estimated (predicted) on the

basis of the current estimates of the model parameters (E-step)

2 compute new estimates of parameters form the complete

dataset imputed at the previous step (M-step)
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em

More exactly, the E-step at kth iteration is the computation of the

expected value Q(θ|θ(k))of the complete data log-likelihood

L(θ|Yobs,Ymis) . Expectation is with respect to the distribution of

missing values conditional on observed data using the current

parameters θ(k) :

Q(θ|θ(k)) =

∫
l(θ|Yobs,Ymis)f(Ymis|Yobs, θ

(k))dYmis

update of the estimates θ(k+1) is obtained by maximizing Q(θ|θ(k))
w.r.t. θ.
Under some regularity assumptions it can be shown that the

sequence θ(n) converges to the ML estimates of θ.
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exponential family: e-step

For distribution of the exponential family, log-likeluhood based on n
observations y = (y1, . . . , yn) can be expressed as:

l(θ|Y) = η(θ)tT (Y) + ng(θ) + c
where η(θ) = (η1(θ)), η2(θ)), . . . , ηs(θ))

t, is the natural parameter,

T (Y) = (T1(Y), T2(Y), . . . , Ts(Y))t is a s-dimensional vector of
su�cient statistics and c is a constant.

Since l(θ|Y) is linear with respect to the su�cient statistics, the

E-step reduces to replacing Tj(Y) with E(Tj(Y)|Yobs, θ
(t)) . For

the exponential family the resulting expression is simple.
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exponential family: m-step

In the case of complete data, MLEs can be found as solution of the

moment equation:

E(T (Y)|θ) = t

where t is the realized value of T (Y) the expected value is w.r.t.

f(Y|θ). In case of incomplete data the quantity on the r.h.s. has

to be replaced by the output from the E-step. This allows explicit

computation of M-step
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example: univariate Gaussian (1)

Complete data (N(µ, σ2)):

T (Y) = (T1(Y), T2(Y))t = (

n∑
i=1

Yi,

n∑
i=1

Y 2
i )t

E(T1) = nµ = t1 , E(T2) = nσ2 + nµ2 = t2 where (t1, t2) are

realization from (T1, T2) :

(t1, t2) = (

n∑
i=1

yi,

n∑
i=1

y2i )

µ̂ = y
σ̂2 = n−1

∑n
i=1(yi − y)2
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example: univariate Gaussian (2)

Incomplete data: (n1 respondents, n0 = n− n1 missing): E-step:

E(T1|Yobs, θ) = E(

n1∑
i=1

yi +

n∑
i=n1+1

yi) =

n1∑
i=1

yi + n0µ

E(T2|Yobs, θ) = E(

n1∑
i=1

y2i +
n∑

i=n1+1

y2i ) =

n1∑
i=1

y2i + n0(σ
2 + µ2)
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example: univariate Gaussian (3)

M-step:

µ(t+1) = n−1

[
n1∑
i=1

yi + n0µ
(t)

]

σ2(t+1) = n−1

[
n1∑
i=1

y2i + n0σ
2(t) + n0µ

2(t)

]
− n−2

[
n1∑
i=1

yi + n0µ
(t)

]2
the above iteration converges to:

µ̂ = n−11

∑n1
i=1 yi

σ̂2 = n−11

∑n1
i=1 y

2
i − µ̂2.
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problems

EM algorithm has to be initialized, i.e., it requires choosing

(starting points)

sometimes likelihood function has several local maxima. EM

may converge to any of them (depending on the starting point)

for some models (e.g. mixture of eteroshedastic Gaussian

distributions) likelihood function is unbounded. In such cases

EM may not converge.
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imputation via em(1)

For imputation purposes, EM is only an intermediate step used to

estimate the distribution that generates data. In the next step,

from the estimated joint distribution one has to derive the

estimates of the relevant conditional distributions corresponding to

various nonresponse patterns.

Example:

Y = (Y1, Y2, Y3) ∼ N(µ,Σ)

parameters:

(µ1, µ2, µ3 ;σ11, σ12, σ13, σ22, σ23, σ33)
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imputation via em(2)

For the pattern where only Y2 is missing, the parameters of the

distribution: f(Y2|Y1, Y3 ): (α2.13, β2.13, σ2.13) are to be estimated.

These can be derived via standard formulas from the joint

distribution parameters (µ,Σ) :

α2.13 = µ2 + Σ2(13)Σ
−1
(13)µ(13)

β2.13 = Σ2(13)Σ
−1
(13)

σ2.13 = σ22 − Σ2(13)Σ
−1
(13)Σ(13)2

where Σ2(13) is the row-vector (σ21, σ23) , Σ(13) is the matrix

(2× 2) whose distinct elements are σ11, σ13, σ33 , µ(13) is the

column vector (µ1, µ3)
t and Σ(13)2 = Σt

2(13)
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alternative method

More simply, one could use only complete data to estimate via

standard linear all the relevant conditional distributions. However

this is not optimal for two reason:

1 the parameters of the di�erent conditional distributions are

estimated separately rather than derived from the joint

distribution parameters estimated only once

2 estimation process does not use all the available information
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with or without residuals?

Once we have estimated the distribution f(Ymis|Yobs) two
imputation methods are possible:

1 using conditional means E(Ymis|Yobs)

2 adding a random disturbance, i.e., obtaining values to be

imputed by drawing from f(Ymis|Yobs).

The �rst method produces more accurate estimates of linear

quantities such as means and totals. However, if we wont to

preserve the distributional characteristics, the second method is

preferable.
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models

The model most commonly used for multivariate numerical data is

the Gaussian model. In fact for a lot of method and software are

for incomplete normal data are available.

However, often normal assumption is not realistic even after some

preliminary transformation of data (e.g. logarithms, Box-Cox, etc.)

In these cases some other approach may be more appropriate.
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predictive mean matching

Predictive Mean Matching (PMM) is more robust with respect to

departure from normality assumption. With PMM, model is used only at

an intermediate stage for computing expectations of missing given

observed data. However, conditional means are not directly used for

imputation. Instead, a suitable distance function is de�ned in terms of

conditional means and used in NND imputation.

The function used for NND is not a proper distance function as a

function of the observed variates. The method depends to some extent

on the model and does not ensures the asimptotic properties of the NND

imputation.

PMM can be useful when observations are not enough for NND being

applied, and at the same time a full parametric approach is di�cult (it is

di�cult to �nd an explicit model �tting adequately data)
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pmm: one response variable

In case of one response variable Y a�ected by nonresponse and p
covariates (X1, . . . , Xp) without missing values, PMM reduces to:

for each unit ui determine the conditional expectation
y∗i = E(Y |xi1, xi2, . . . , xip) based on the estimated

parameters of the regression of Y on X1, X2, . . . , Xp

for each ui with Y missing, impute the value yi taken from the

donor uj , whose predictive mean y
∗
j is closest to y∗i

If p = 1, PMM is the same as NND.
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pmm: general case

In the general case of arbitrary response pattern, PMM consists of

the following steps:

estimate the joint distribution parameters via EM algorithm

for each incomplete record ui, compute the conditional mean
y∗ = E(Ymis,i|yobs,i)

compute the same conditional mean for all complete records

(donors)

impute ui via NND using the Mahalanobis metrics based on

the residual covariance matrix from the regression of Ymis on

Yobs.
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two important references

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with

Missing Data 2nd edition, Wiley.

Shafer, J.L. (1997). Analysis of Incomplete Multivariate Data New

York: CRC Press.
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