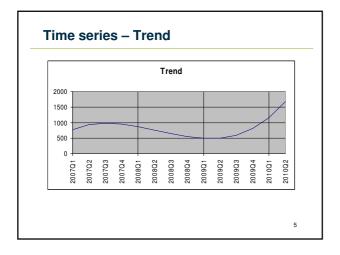
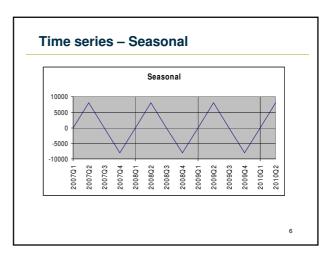
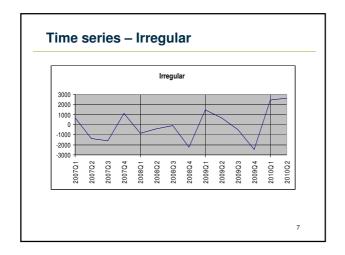
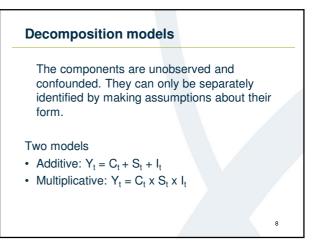
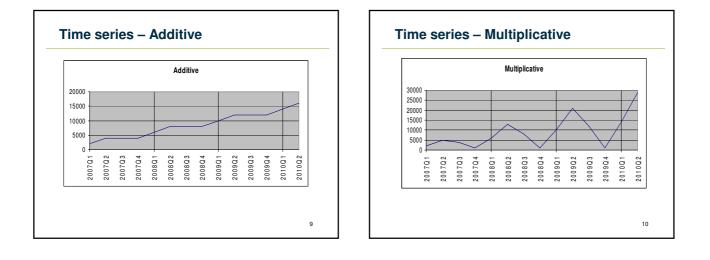

Definition

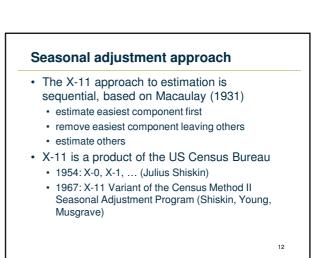

A time series


"Measures the *same phenomenon* at *equal intervals* of time"


Γime series – Data					
Date	e Value				
2007Q	1 522				
2007 Q.	2 11622				
2007 Q	3 2323				
2007 Q	4 -5105				
2008Q	1 6804				
2008 Q	2 14044				
2008Q	3 6263				
2008Q-	4 1229				
2009Q	1 8284				
2009Q	2 16701				
2009Q	3 13874				
2009Q	4 3792				
2010Q	1 14232				
2010Q	2 24967				




1



11

Seasonal adjustment - Estimation

- The aim of seasonal adjustment is to estimate the seasonal component of the time series and remove it.
- Additive: $SA(Y_t) = Y_t S_t = C_t + I_t$
- Multiplicative: SA(Y_t)= Y_t / S_t = C_t \times I_t

The X-11 method

- X-11 uses a system of filtering to estimate the different components
- It runs through a cycle of "estimation and improvement" three times.
- The primary filters used moving averages (MA), which are an example of "linear filters".

Moving averages

If $\{y_t\}$ is a time series of values

$$M(y_t) = \sum_{j=-n_1}^{n_1} w_{t+j} y_{t+j}$$

where $M(y_t)$ is an MA of order $(n_1 + n_2 + 1) < N$

successive terms and often:

 $\sum_{i=-n}^{n_2} w_{i+j} = 1$

13

17

If $n_1 = n_2$ then $M(y_t)$ is said to be "centred"

If $w_{t-j} = w_{t+j}$ for all j then $M(y_t)$ is said to be "symmetric"

14

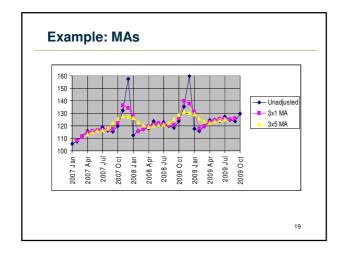
	An MA with an order	Period		
A simple 3-term MA: $M(y_t) = \frac{1}{3}(y_{t-1} + y_t + y_{t+1})$ $5 102 104.3 104.3 104.3 104.3 105.3 105 105.3 105.3 105 105.3 105 105.3 105 105.3 105 105.3 105 105.3 105 105 105.3 105 105 105.3 105$	which is odd can be	1	100	
A simple 3-term MA: $ \begin{array}{c} 4 & 106 & 104.0 \\ 5 & 102 & 104.3 \\ 5 & 102 & 104.3 \\ 6 & 105 & 105.3 \\ \end{array} $	centred on its middle value.	2	103	102.3
$M(y_t) = \frac{1}{3}(y_{t-1} + y_t + y_{t+1}) = \frac{4}{6} = \frac{106}{102} = \frac{104.0}{105.3}$	Λ simple 3 term MA:	3	104	104.3
-	1	4	106	104.0
-	$M(y) = \frac{1}{2}(y + y + y)$	5	102	104.3
7 109	$(y_t) = 3(y_{t-1} + y_t + y_{t+1})$	6	105	105.3
		7	109	

Centring moving averages

For an MAwith an even order, the centre of the MA falls	Period	Value	4 – term MA	2X4 MA
between values. For example, a simple 4-term MA	1	100		
$\frac{1}{4}(y_{t-1} + y_t + y_{t+1} + y_{t+2})$	2	103		
4 The middle of the MA is between			103.25	
the second and third terms.	3	104	103.75	103.5
The solution: take a 2-term MA of the	4	106	103.75	104.0
original 4-term MA.			104.25	
	5	102		
	6	105		16

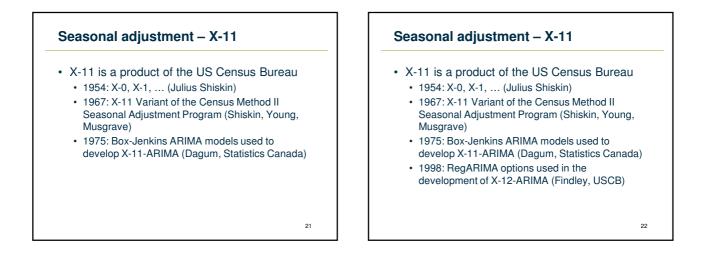
Centring moving averages

This is known as a 2x4 MA. More generally, we can express such "composite" MAs as n x m.


For the 2 x 4 composite MA: $1 \ 1 \ 1$

$$M(y_{t}) = \frac{1}{2} \left[\frac{1}{4} \left(y_{t-2} + y_{t-1} + y_{t} + y_{t+1} \right) + \frac{1}{4} \left(y_{t-1} + y_{t} + y_{t+1} + y_{t+2} \right) \right]$$
$$= \frac{1}{8} y_{t-2} + \frac{2}{8} y_{t-1} + \frac{2}{8} y_{t} + \frac{2}{8} y_{t+1} + \frac{1}{8} y_{t+2}$$

The weights are written $\frac{1}{8}[1,2,2,2,1]$.


Seasonal adjustment – MA problem
The X-11 method uses moving averages (MAs) for seasonal adjustment
The problem with MAs is ...

20

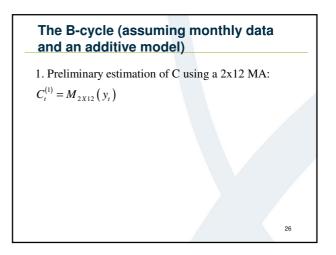
- The X-11 method uses moving averages (MAs) for seasonal adjustment
- The problem with MAs is ...
- \ldots end points and outliers
- The solution for X-11 was asymmetric moving averages
- However, research in the 1970's proved ARIMA forecasting - to enable symmetric moving averages - is better (ie lower revisions)

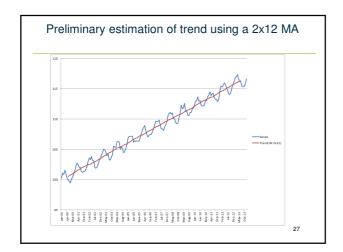
Seasonal adjustment – X-11

- X-11 is a product of the US Census Bureau
 - 1954: X-0, X-1, ... (Julius Shiskin)
 - 1967: X-11 Variant of the Census Method II Seasonal Adjustment Program (Shiskin, Young, Musgrave)
 - 1975: Box-Jenkins ARIMA models used to develop X-11-ARIMA (Dagum, Statistics Canada)
 - 1998: RegARIMA options used in the development of X-12-ARIMA (Findley, USCB)
 - 2012: Added SEATS decomposition and renamed X-13ARIMA-SEATS

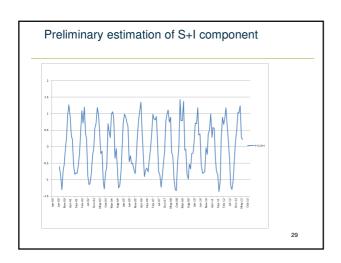
23

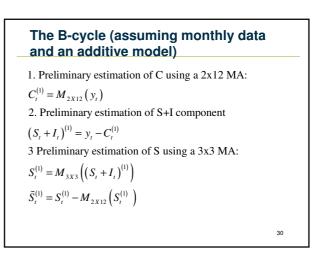
Analysing a time series using X-12 ARIMA

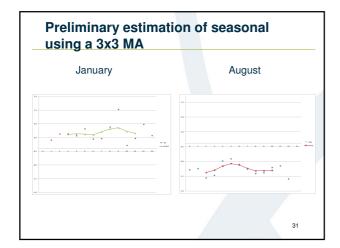

- 1. Choose a decomposition
- 2. Fit a regARIMA model to clean and forecast the series
- 3. Seasonally adjust with X-11 method
- 4. Use diagnostics to assess your adjustment

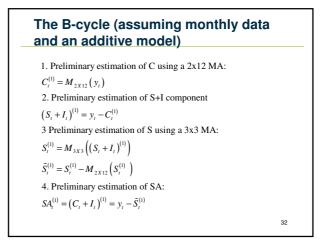

24

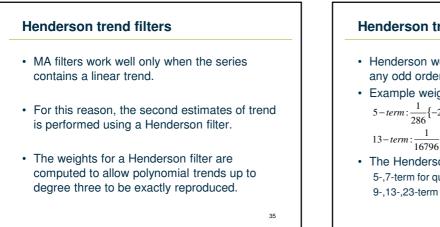

The X-11 algorithm

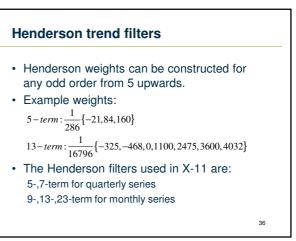

- The X-11 approach contains four cycles (labelled A-D).
- The A-cycle consists of prior adjustment (cleaning the data).
- While the B- to D-cycles represent the iterative part of the algorithm. Each iteration leads to better estimates of the components

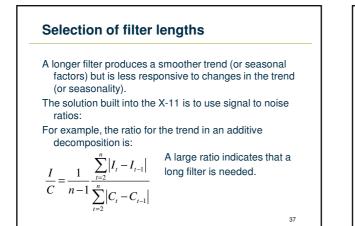

25











	Monthly series	Quarterly series
I/C < 1	9-term	5-term
1 <i c<3.5<="" td=""><td>13-term</td><td>5-term</td></i>	13-term	5-term
I/C > 3.5	23-term	7-term
		38

Selection of seasonal filter lengths

- Again, as with the trend, the choice of length of filter is based on the noise to signal ratio.
- But here the ratio is between noise and seasonality.
- For, an additive series:

$$\frac{I}{S} = \frac{\sum_{j} \frac{n_{j}}{(n_{j}-1)} \sum_{i=2}^{\infty} |I_{i,j} - I_{i-1,j}|}{\sum_{j} \frac{n_{j}}{(n_{j}-1)} \sum_{i=2}^{\infty} |S_{i,j} - S_{i-1,j}|}$$

where i = year, j = month or quarter

39

Image: Second second