5. Production and input-output

The chapter describes the determination of values and volumes for production, intermediate consumption and gross value added in the industries of ADAM. We also discuss the input-output-based price determination, which concerns the prices of demand components based on prices of imports and Danish production. Common to both value volume and price calculation is that they ensure the mutual consistency of the behavioural equations in ADAM by linking supply and demand.

5.1 Supply and demand

Equilibrium in the goods market

The starting point for ADAM's determination of production and gross domestic product is the simple equilibrium condition for goods markets found in textbooks:
(5.1) $Y+M=C+I+E$
i.e. gross domestic product, Y, plus imports, M, equals the sum of consumption, C, investments, I, and exports, E, all at current prices.

However, for use in ADAM condition (5.1) is slightly reformulated. Firstly, it is important to divide the GDP into product taxes, $S v$, and the rest, which is gross value added, $Y f$, so that $Y=Y f+S v$. Secondly, in ADAM the equilibrium condition is formulated for production value, X, i.e. production calculated inclusive of the input of materials in production. The input of materials comprises goods and services used for intermediate consumption in industries. If V denotes total intermediate consumption, production can be written $X=Y f+V$.

Using these definitions, the equilibrium condition can be rewritten as
$X+M+S v=V+C+I+E$

The left hand side of (5.2) is the total resources (supply) of goods and services at market prices, and it comes from either Danish production or imports incl. imposed taxes. The right hand side of (5.2) is total use (demand) of goods and services, and it consists of the total intermediate consumption, V, plus the three basic components of final demand: consumption, investment, and exports. Uses and resources must be equal to each other.

ADAM contains not only one of these equilibrium conditions, but many. In principle, there is an equilibrium condition for each good. The introduced combination of three resources and four uses in (5.2) can be arranged as an input-output table:
$X=X_{V}+X_{C}+X_{I}+X_{E}$
$M=M_{V}+M_{C}+M_{I}+M_{E}$
$S v=S v_{V}+S v_{C}+S v_{I}+S v_{E}$
where e.g. X_{V} represents Danish-produced input of materials, M_{I} is imports of capital goods, and $S v_{c}$ is taxes on consumption. The total equilibrium condition (5.2) is still valid and can be retrieved by summing the equations in (5.3).

The structure of the goods part in the input-output table is reflected by the right hand side of (5.3). There is a row for each resource, e.g. [$X_{V} X_{C} X_{I} X_{E}$] for Danish production, and a column for each use, e.g. [$X_{C} M_{C} S v_{C}$] for consumption. The row for X shows the structure of demand for Danish production, i.e. the distribution on input of materials, consumption, investment, and exports. Column C shows the cost structure of consumption, i.e. the distribution on Danish production, imports and taxes.

To complete the picture, the goods part of the input-output table is often supplemented by gross value added at the bottom. Thus, the column for an industry will add up to its total gross production instead of its total inputs in production. In such a row of value added for industries, there are zeros in the cells of C, I and E.

Table 5.1 provides an overview of the 12 industries in ADAM. The entire input-output table for ADAM is shown in tables 5.A-5.C placed at the end of the chapter. Tables 5.A-5.C divide the gross value added of the 12 industries into gross profits, wages, and other taxes, as will be discussed in connection with equation (5.12).

Table 5.1 Production value and employment in 12 industries, 2009

	Variable	Production value X	Employment Q
		DKK mio.	1.000 persons
Agriculture	a	68544	81
Extraction of hydrocarbons etc.	e	44493	3
Oil refineries	$n g$	21327	0,71
Electricity, gas and heating	$n e$	58227	16
Food processing	$n f$	133310	62
Manufacturing	$n z$	412739	293
Construction	b	195622	174
Housing	h	160653	16
Sea transport	$q s$	137608	19
Financial services	$q f$	160226	85
Private services	$q z$	1027401	1262
Public services	o	500317	801

5.2 Model

Groupings in ADAM

Names
put output koefficients

ADAM distinguishes between 12 different industries of production, 10 types of imports, 3 types of product taxes, 9 types of consumption, 4 types of investments and 7 types of exports. Thus, in practice the inputoutput table is much larger (25 rows and 32 columns), but the principle is exactly the same as in the small input-output table in (5.3).

The input-output table is used for forming input-output coefficients. Such i-o coefficients are variables in ADAM, and their names follow a simple notation: for examples, the variable aXnf_Cf denotes the i-o coefficient for supplies of Danish manufactured food, Xnf, into food consumption, $C f$, and aM01_E01 is the coefficient of re-exports of food products, i.e. of SITC groups 0 and 1. A few input-output cells are variables in mio. DKK, for example Spp_Cf is excise duty on food consumption.

The i-o coefficient for the supply from imports of cars to private consumption of cars, e.g., is defined as
$a M 7 b_{-} C b=\frac{M 7 b_{-} C b}{p m 7 b \cdot f C b}$
i.e. the i-o cell is deflated to a quantity measure using the general import price of the row, and the i-o coefficient is the ratio of this cell quantity to the total column quantity, private consumption of cars.

There are five basic principles for the determination of i-o cells:

- Demanded volume is provided immediately, either as Danish production or as import.
- The split-up between Danish production and imports reflects the price-sensitive market shares determined in the import equations. In the short term, production is often more sluggish while import reacts more quickly to demand fluctuations cf. the estimated short-term import demand elasticity above 1.
- Price changes on resource components are passed on fully in the price of uses.
- As a starting point, the volume distribution in the column for a given use is assumed to remain unchanged from the previous year. Thus, for example, if car consumption increases by 1 per cent in volume, the car imports and the car-sale-related services will both grow by 1 per cent, and the i-o coefficients will be constants.
- As a starting point, prices in the row for a given resource are assumed to change proportionally from the previous year. Thus, for example, if the gasoline price increases by 1 per cent, the price of gasoline consumption will increase by 1 per cent for both households and industries.

Constant i-o Though the i-o coefficients are basically considered constant, they are coefficients endogenous variables in ADAM. In the simplest case, for example:

$$
\begin{equation*}
a M 7 b_{-} C b=a M 7 b_{-} C b_{-1} \tag{5.5}
\end{equation*}
$$

Volumes

The total volume of a resource is determined as the sum of the contributions of all demand components using the i-o coefficients of the resource component as weights. Again using car imports as an example:

$$
\begin{aligned}
f M 7 b= & a M 7 b_{-} x a \cdot f X a+\ldots+a M 7 b _C b \cdot f C b+\ldots+a M 7 b_{-} \mathrm{im} \cdot f I m+ \\
& \ldots+a M 7 b_{-} E 7 \cdot f E 7
\end{aligned}
$$

Similar equations determine the volume of the other import components and of the production in industries, $f X_{i}$.

For all use components, i.e. demand components in ADAM, the net price (net of indirect taxes) is calculated as the sum of the contributions from all resource prices using the i-o coefficients of the demand components as weights. For example, the net price of car consumption is given by:

```
\(p n c b=p x a \cdot a X a_{-} c b+\ldots+p m 7 b \cdot a M 7 b{ }_{-} C b+\ldots+p m s \cdot a M s{ }_{-} C b\)
```

The summation embraces all production industries and import components.

When the net price is determined, the market price of the demand component is found by adding taxes. For example, the price of food consumption is given by:
$p c f=(p n c f+t p c f) \cdot(1+b t g c f \cdot t g)$
where tpcf is the rate of excise duty on food consumption, tg is the general VAT rate, and btgcf indicates the VAT load on food consumption. See chapter 8 on public finances for further discussion on the role of indirect taxes.

Similar equations determine the prices on the rest of the consumption components as well as on inputs of materials, $p v_{j i}$, investments, $p i_{j}$, and exports, $p e_{j}$.

It should be noted that some industries do not follow the normal principle that production adjusts to demand.

Production in agriculture, $X a$, and the related food production, $X n f$, are either exogenous or a function of the ratio between the exogenous food price and Danish costs. Thus, they do not respond to changes in food demand. Instead, it is food exports that adapt when there are changes in the food demand or agricultural production.
Extraction of hydrocarbons etc., $X e$, is an exogenous production.

Production in housing, $X h$, is proportional to the stock of houses, and is therefore slow to adjust to the housing demand. In the short term, it is rather the price of existing dwellings, which responds to demand. In the long term, housing stock and hence housing production are determined by housing demand, cf. the discussion of the housing model in chapter 3.

Production of public services, Xo, is determined by the exogenous employment of the public industry, and both public employment and production are seen as politically determined, see Chapter 8 on public finances.

For the special industries just listed, it is necessary to adjust the determination of input-output cells in various ways.

On import substitution
$a M 01 _C f=a M 01 _C f_{-1} \cdot k f m z 01$

The correction factor, $k f m z 01$, expresses the growth in the market share of food imports, M01, measured in volumes. This market share is determined by the import equation for food, and if the market share increases by 1 per cent, $\mathrm{kfmz01}$ equals 1.01 . Note that the change in the market share of M01 is assumed to have the same proportional effect on all cells in the M01 row.

When the import share is changed, the share of domestic production must be changed in the opposite direction. Thus, the total market is not affected by a shift in import share; the gain of one market share is the loss of the other.

Food imports are competing with the production of the Danish food industry, Xnf. Consequently, when food imports rise because of a higher market share, the additional imports are deducted in the food production. This means that the coefficient equation for food production delivered to food consumption is modified to:
$a X n f f_{-} c f=a X n f_{-} C f_{-1}-a M 01_{-} C f_{-1} \cdot(k f m z 01-1) \frac{p m 01_{-1}}{p x n f_{-1}}$

If the import market share is unchanged, i.e. $\mathrm{kfmz01}=1$, the equation works as the simple cell equation in (5.5). But if the import market share increases by, e.g. 1 per cent, the import cell M01_Cf will increase by 1 per cent, cf. (5.9), while the Danish production cell in (5.10) will decrease by the same amount at previous years' prices. Thus, the sum of the two cells will remain unchanged.

Gross value added

When the production and the input of intermediate consumption are determined, gross value added, GVA, can be determined as production minus intermediate consumption:
$Y f_{i}=X_{i}-V_{i}$
"Other taxes on production"

A part of gross value added goes to the public sector in the form of other net taxes on production, $S p z$, (net means net of subsidies). These production taxes are distributed across industries. For example, agriculture pays property tax and receives EU subsidies, while the housing industry pays property tax and receives housing subsidies, see also the chapter on public finances

Gross surplus Finally, the "gross operating surplus and mixed income" for short the residual income, can be determined by:
$Y r_{i}=Y f_{i}-S p z_{i}-Y w_{i}$

That is to say: Gross value added minus other net taxes on production and minus wages. Residual income covers capital costs and profit.

Totals for $Y f, S p z$ and $Y w$ are made by a summation taking place over the 12 industries.

5.3 Properties

In the case of a positive demand shock, ADAM's total output and employment will increase in the short term and thereafter decrease in the long term, reverting to the baseline. This is the general effect on the total economy. In contrast, production and employment in individual industries will not necessarily return to the starting point.

If the public purchase of goods and services increase by 1 per cent, the accompanying wage increase will be instrumental in crowding out exports, but the higher wage increases the purchasing power of households, so both public and private consumption will increase in the long term. It is primarily manufacturing that produces the exported goods, so in the long term value added and employment will be smaller in manufacturing. On the other hand, the private service industries mainly produce for the domestic market, so these industries will be larger in the long term. Figures 5.1 and 5.2 illustrate the effects on gross value added and employment in the manufacturing industries,
specifically the n-industries $n z, n f, n g$ and $n e$, as well as in the service industries $q z, q s$ and $q f$.

Figure 5.1 Public purchase + 1\%, effect on gross value added

Figure 5.2 Public purchase $+1 \%$, effect on employment

Box 5.1 Adjusting in the input-output system

It is not easy to make adjustments in the equations of the input-output system without running the risk of difficulties with the many definitional relations that must apply.
In general, adjustments to the input-output cells must be made so that either the row or column sum remains unchanged: If one cell is adjusted upwards, another cell must be adjusted downwards.

If the column sum remains unchanged as in the example of import substitution, the adjustment will affect the distribution of a given demand component on resource components, such as imports and Danish production.
If instead the row sum remains unchanged, the adjustment will affect the distribution of a given resource price on demand components. The problem may be that a price increase of Danish production is expected to have an impact on domestic prices, but not on the export price. This can be obtained by entering the row of the production industry in question and in this row we adjust upwards a domestic cell and downwards an export-cell by the same amount.
This kind of adjustment in the pass-through of resource prices is, in practice, the most frequent intervention in the input-output system, and a mechanism for price adjustment has been specified in the inputoutput equations. More specifically, special adjustment terms have been specified for the net price of every demand component, e.g. Jdpncf for the net price on food consumption. These adjustment terms are located in cells with input from the service industry ($q z$), for example supply to food consumption, and a change in the adjustment term can be interpreted as a change in trading profit (wholesale and retail trade). The sum of the special adjustment terms is automatically offset in the price of inventory investment, pnil, to ensure that the row identity for the $q z$ industry holds, also when the problem is ignored by the model user. Obviously, the drawback of the automatic adjustment is that the price of inventory investment becomes difficult to interpret.

ADAM's input-output system is further discussed in a number of model group papers on dst.dk/adam.

Table 5.A
Input-output table, input to industries. 2007

	Xa	Xe	Xng	Xne	Xnf	Xnz	Xb	Xqz	Xqs	Xqf	Xh	Хо	Total
	DKK bn..												
Xa	8	0	0	1	38	0	2	1	0	0	0	2	51
Xe	0	1	20	11	0	1	1	0	0	0	0	0	34
Xng	2	0	1	0	0	1	1	4	0	0	0	0	9
Xne	1	0	0	4	2	5	0	8	0	0	0	3	24
Xnf	9	0	0	0	13	1	0	8	0	0	0	1	33
Xnz	3	1	0	1	5	85	45	33	2	2	0	6	184
Xb	1	1	0	4	1	2	2	21	0	2	19	5	58
Xqz	10	2	1	3	16	73	56	294	3	15	1	65	538
Xqs	0	0	0	0	0	0	0	7	0	0	0	1	7
Xqf	5	0	0	1	1	3	2	16	2	23	13	2	69
Xh	-	-	-	-	-	-	-	-	-	-	-	-	-
Xo	0	0	0	0	0	1	0	6	0	1	0	11	20
M01	4	0	0	0	15	1	0	6	0	0	0	1	27
M2	1	0	0	0	4	6	2	0	0	0	0	0	14
M3k	0	0	-	3	0	0	-	0	-	-	0	0	3
M3r	-	-	6	-	-	-	-	-	-	-	-	-	6
M3q	1	0	0	1	0	1	1	6	27	0	0	0	39
M59	3	0	1	0	6	109	25	31	2	1	0	13	190
M7b	-	-	-	-	-	0	-	-	-	-	-	-	0
M7y	-	-	-	-	-	0	0	0	-	-	-	0	1
Ms	1	2	0	1	5	17	3	81	117	6	1	8	241
Mt	-	-	-	-	-	-	-	-	-	-	-	-	-
Spm	0	0	0	0	0	0	0	0	0	0	0	0	1
Spp+Spr	1	2	0	0	1	2	2	9	0	0	4	2	23
Spg	0	0	0	0	0	1	0	14	0	4	5	21	45
Spz	-6	-0	- 0	0	-0	- 1	0	1	- 0	3	4	- 3	-1
Yw	9	2	0	6	22	122	64	370	6	49	4	275	929
Yr	14	55	1	22	9	50	17	168	13	30	99	31	507
Total	70	66	31	57	139	481	223	1084	172	135	150	446	3054

Note: The last three rows, $S p z, Y w$ and $Y r$ distribute value added in the
industry on production taxes, wages, and gross operating surplus.

Table 5.B
Input-output table, input to consumption and investments. 2007

	Cf	Cv	Ce	Cg	Cb	Ch	Cs	Ct	-Et	Co	Im	lb	It	11	Total
								KK bn							
Xa	2	1	0	-	-	-	0	-	-	1	0	-	-0	1	5
Xe	0	0	-	-	-	0	0	-	-	-	0	-	-	2	3
Xng	0	0	1	4	-	-	0	-	-	-	0	-	-	1	7
Xne	-	0	19	-	-	2	0	-	-	-	0	-	-	0	22
Xnf	28	1	-	-	-	-	0	-	.	0	0	-	-	1	30
Xnz	0	14	0	-0	0	1	2	-	-	1	36	-	-	7	61
Xb	-	0	-	-	-	4	0	-	-	7	0	153	-	-	164
Xqz	34	74	2	2	9	7	142	-	-	31	49	13	-	2	365
Xqs	-	0	.	.	-		1	-	-	-	0	-	-	.	1
Xqf	-	0	-	-	-	-	56	-	-	0	3	-	-	-	60
Xh	-	0	-	-	-	150	0	-	-	-		-	-	-	150
Xo	-	0	-	-	-	-	30	-	-	393	1	0	-	-	424
M01	19	1	-	-	-	-	-	-	-	0	-	-	-0	0	20
M2	0	1	1	-	-	0	-	-	-	-	0	-	-	1	3
M3k	-	0	0	-	-	.	-	-	-	-	.	-	-	0	0
M3r	-	-	-	-	-	.	-	-	-	-	-	-	-	1	1
M3q	-	0	1	3	-	-	-	-	-	-	${ }^{-}$	-	-	- 0	4
M59	0	38	.	0	,	1	2	-	-	5	50	-	-	8	104
M7b	.		-	.	17	.	.	-	-	0	8	-	-	0	26
M7y	-	0	-	-	-	-	-	-	-	-	5	-	-	1	7
Ms	-	1	-	-	-	0	4	-	- 36	0	5	0	-	0	- 26
Mt	-	-	-	-	-	-	-	38	-				-	.	38
Spm	0	1	0	0	0	0	0	-	-	0	0	-	-0	0	1
Spp+Spr	11	0	12	10	15	1	-3	-	-	0	10			0	58
Spg	22	31	9	5		2	20	-	-	2		26	-	.	131
Spz	-		-	-	-	-	-	-	-	-	-		-	-	
Yw	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Yr	-	-	-	-	-	-	-	.	-	-	-	-	-	-	
Total	116	163	46	24	47	168	255	38	-36	440	177	194	-0	25	745

Table 5.C
Input-output table, input to exports. 2007

	E01	E2	E3	E59	E7y	Es	Et	Total	Total uses
	DKK bn.								
Xa	7	6	-	-	-	0	-	11	70
Xe	-	1	28	0	-	1		29	66
Xng	-	0	15	0	-	-		15	31
Xne	-	-	11	-	-	-	-	11	57
Xnf	68	4	-	2	-	2		75	139
Xnz	0	3	0	224	2	7		237	481
Xb	-	-	-		-	1	-	1	223
Xqz	10	7	0	46	0	117	-	181	1084
Xqs	-	-	-	-	-	163	-	163	172
Xqf	-	-	-	0	-	6	-	6	135
Xh	-	-	-	-	-	-	-	-	150
Xo	-	-	-	-	-	2	-	2	446
M01	9	-	-	-	-	-	-	9	56
M2	-	2	-	-	-	-	-	2	19
M3k	-	-	0	-	-	-	-	0	4
M3r	-	-	0	-	-	-	-	0	7
M3q	-	-	7	-	-	-	-	7	49
M59	-	-	-	88	-	-	-	88	381
M7b	-	-	-	4	-	-	-	4	30
M7y	-	-	-	-	3	-	-	3	11
Ms	-	-	-	-	-	3	36	38	253
Mt	-	-	-	-	-	-	-	-	38
Spm	0	0	0	1	0	-	-	1	3
Spp+Spr	-1	0	- 0	- 0	-	-		-1	80
Spg	-	-	-	-	-	-			176
Spz	-	-	-	-	-	-	-	-	-1
Yw	-	-	-	-	-	-	-	-	929
Yr	-	-	-	-	-	-	-	-	507
Total	94	23	61	365	5	302	36	885	5595

