# Introduction to Seasonal adjustment



### **Decomposition of a time series**

- What is seasonality?
- Unobserved components
- Additive or multiplicative model



2

#### What is seasonality

- No 100% definition!
- Fluctuations repeating themselves (more or less precisely) from year to year
- Intuitively, seasonality should sum to zero within a year (for an additive decomposition)



#### Simulated time series with seasonality





4

#### Model for unobservable components

Additive model

$$O_t = T_t + S_t + I_t = A_t + S_t$$

Multiplicative model

$$O_t = T_t \cdot S_t \cdot I_t = A_t \cdot S_t$$

Where *O* is the pre-adjusted series,

- *t* is the time,
- T is the trend-cycle,
- S is the seasonal component,
- I is the irregular component (white noise), and
- A is the seasonally adjusted series.

No unique decomposition without conditioning!



#### **Methods and software**

- X-12-ARIMA
  - Relatively few assumptions
  - Non-parametric approach
- TRAMO/SEATS
  - Uses a mathematical model with many assumptions
  - Parametric approach



6

#### Demetra

- Developed by (not at) Eurostat
- Graphical interface for X-12-ARIMA and TRAMO/SEATS
- Currently under development will feature functions for documenting seasonal adjustment



# **Pre-adjustment**

#### Calendar effects and outliers



# The flow in seasonal adjustment

- 1. Transformation (possibly)
  - To ensure stationarity (poss. log.transformation)
- 2. Pre-adjustment
  - Prepare for estimation of the season
- 3. ARIMA model
  - Find the model with the best description of the preadjusted time series
- 4. Forecast the series
  - Forecast with the ARIMA model
- 5. Decomposition
  - Split up in Trend, Season and Irregular component



#### **Notation**

Two possible models

- Additive:  $O_t = T_t + S_t + I_t = A_t + S_t$
- Multiplikative (log.transformed):

$$O_t = T_t \cdot S_t \cdot I_t = A_t \cdot S_t$$

where

- $O_t$  the pre-adjusted time series
  - $T_t$  the trend
  - $S_t$  the seasonal component
  - $I_t$  the irregular component
  - $A_t$  the seasonal adjusted series



#### Regression

Normal regression  $X_t = \beta Z_t + O_t$ 

- $-X_t$  the original series
- Z<sub>t</sub> explanatory variable (one or more)
- $-\beta$  regression coefficient (one or more)
- O<sub>t</sub> residuals (residual variation)



#### **Pre-adjustment**

$$X_t = \beta_1 Z_{1t} + \ldots + \beta_k Z_{kt} + O_t$$

where

 $\begin{array}{l} X_t - \mbox{the original series} \\ Z_{it} - \mbox{explicatory variables} \\ \beta_i - \mbox{regression coefficients} \\ O_t - \mbox{the preadjusted series (follows an ARIMA model)} \end{array}$ 



### **Explicatory variables - Calendar**

- Months/Quarters are not comparable
  - The length of the month differs
    - The more working days the higher production
    - Leap year
  - Type of the day differs
    - Sundays/Holy days versus normal trading days
    - Trade is bigger Saturday than Monday
  - Holydays can move (moving seasonality)
    - Easter
- Countries are not comparable
  - Easter in western and eastern Catholic church
  - Ramadan
  - Comparability in the EU (Eurostat)



#### **Explicatory variables – External reasons**

- Changes caused by external reasons:
  - Outliers (extreme/not typical observations)
    - Reduced sale of ice cream in a cold summer
    - Strike
    - Freezing days (construction business)
  - Level shift (permanent change)
    - Changes in duties and taxes e.g. on cars
    - Financial crisis
  - Transitory changes (temporary/provisional)
    - Felling of timber after a storm
    - Rise in price on e.g. coffee



# **Types of Pre-adjustment - 1**

Two types of Pre-adjustments:

- **<u>Temporary</u>** corrections
  - Additive outliers (AO)
  - Level shift (LS)
  - Transitory change (TC)
  - Ramp
  - User Defined

#### Permanent corrections

- Trading days
- Easter
- National Holy days
- Leap Year
- User Defined

Calendar effects



External reasons

# **Types of Pre-adjustment - 2**

Difference between <u>permanent</u> and <u>temporary</u> corrections

After the decomposition

- temporary corrections will be taken back in the seasonal adjusted series (Level shifts e.g.)
  - These things have happened in the real world
- permanent corrections will not be taken back in the <u>seasonal adjusted series</u>
  - The purpose is to compare months/quarters (standard months, standard quarters)



### **Explicatory variables**

• <u>Temporary</u> corrections



### **Explicatory variables**

Permanent corrections



- The Production in February is on average 28.25 days.
- In normal years the Production will be increased from 28 days to 28.25 days
- In Leap years the Production will be reduced from 29 days to 28.25 days.



# **Explicatory variables**

- Permanent corrections
  - Trading Days:
    - Z<sub>t</sub> is the number of trading days in each month
      - e.g.  $Z_t = (20, 23, 21, 22, 22, 21, 23, ...)$
    - $Z_{1t} \dots Z_{7t}$  is the number of Mondays ... Sundays

e.g.  $Z_{1t} = (4, 4, 5, 4, 4, 5, 4, 5, 4, ...)$ 

• All months are changed to include the same amount of trading days or days of each type (standard month).



#### **Pre-adjustment in Demetra**

- Automatic outlier/calendar correction:
  - LS/AO/TC, Easter, Leap year/ Trading days (7,6,2,1 regressors) via regression
  - Pre test for significance (t-test)
  - Effect included if significant



#### **X-11**

# An algorithm for decomposition



#### *n*×*m*-terms moving average

 An n x m moving average is an mterm simple average taken over n consecutive sequential spans.

$$\overline{X}_{t}^{3\times3} = \frac{1}{3} \left( \frac{X_{t-2} + X_{t-1} + X_{t}}{3} + \frac{X_{t-1} + X_{t} + X_{t+1}}{3} + \frac{X_{t} + X_{t+1} + X_{t+2}}{3} \right)$$
$$= \frac{1}{9} X_{t-2} + \frac{2}{9} X_{t-1} + \frac{3}{9} X_{t} + \frac{2}{9} X_{t+1} + \frac{1}{9} X_{t+2}$$



#### **Filters in X-11**

- Estimation of trend-cycle from raw series: 2×12 (monthly figures) or 2×4 (quarterly figures)
- Estimation of seasonal component from detrended series (SI-ratio): 3×3S, 3×5S or 3×9S (only monthly series)



# The X-11 algorithm

- Linear filters during three steps
  - Step 1: Initial estimates
  - Step 2: Final seasonal component
  - Step 3: Final trend and irregular component
- Let  $O_t$  be the pre-adjusted series and assume an additive decomposition model:  $O_t = T_t + S_t + I_t = A_t + S_t$
- The following slides show the decomposition of a monthly series...



# X-11: Step 1 (1 of 3)

(i) Calculating initial trend estimate using 2×12 moving average:

$$T_t^{(1)} = \frac{1}{24}O_{t-6} + \frac{1}{12}O_{t-5} + \dots + \frac{1}{12}O_t + \dots + \frac{1}{12}O_{t+5} + \frac{1}{24}O_{t+6}$$

(ii) Calculating initial SI-ratio:

$$(S_t + I_t)^{(1)} = SI_t^{(1)} = O_t - T_t^{(1)}$$



### X-11: Step 1 (2 of 3)

(iii) Calculating initial seasonal component using 3×3 seasonal average:

$$\widetilde{S}_{t}^{(1)} = \frac{1}{9}SI_{t-24}^{(1)} + \frac{2}{9}SI_{t-12}^{(1)} + \frac{3}{9}SI_{t}^{(1)} + \frac{2}{9}SI_{t+12}^{(1)} + \frac{1}{9}SI_{t+24}^{(1)}$$

followed by normalization:

$$S_{t}^{(1)} = \widetilde{S}_{t}^{(1)} - \left(\frac{1}{24}\widetilde{S}_{t-6}^{(1)} + \frac{1}{12}\widetilde{S}_{t-5}^{(1)} + \dots + \frac{1}{12}\widetilde{S}_{t-5}^{(1)} + \frac{1}{24}\widetilde{S}_{t+6}^{(1)}\right)$$



## X-11: Step 1 (3 of 3)

(iv) Calculating preliminary seasonally adjusted series:

 $A_t^{(1)} = O_t - S_t^{(1)}$ 

• Choice of filters used during Step 1 does not depend on the series – they are fixed.



## X-11: Step 1 (3 of 3)

(iv) Calculating preliminary seasonally adjusted series:

 $A_t^{(1)} = O_t - S_t^{(1)}$ 

• Choice of filters used during Step 1 does not depend on the series – they are fixed.



## X-11: Step 2 (1 of 3)

(i) Calculate intermediary trend using something called a Henderson filter. A different type of moving average, which empirically has proven useful.

(ii) Calculate SI-ratio:

$$(S_t + I_t)^{(2)} = SI_t^{(2)} = O_t - T_t^{(2)}$$



#### X-11: Step 2 (2 of 3)

(iii) Calculating seasonal factor using seasonal average (typically 3x5):

$$\widetilde{S}_{t}^{(2)} = \frac{1}{15} SI_{t-36}^{(2)} + \frac{2}{15} SI_{t-24}^{(2)} + \frac{3}{15} SI_{t-12}^{(2)} + \frac{3}{15} SI_{t-12}^{(2)} + \frac{3}{15} SI_{t}^{(2)} + \frac{3}{15} SI_{t+12}^{(2)} + \frac{2}{15} SI_{t+24}^{(2)} + \frac{1}{15} SI_{t+36}^{(2)}$$

followed by normalization:

$$S_{t}^{(2)} = \widetilde{S}_{t}^{(2)} - \left(\frac{1}{24}\widetilde{S}_{t-6}^{(2)} + \frac{1}{12}\widetilde{S}_{t-5}^{(2)} + \dots + \frac{1}{12}\widetilde{S}_{t-5}^{(2)} + \frac{1}{24}\widetilde{S}_{t+6}^{(2)}\right)$$



### X-11: Step 2 (3 of 3)

Seasonal filter is either  $3 \times 3S$ ,  $3 \times 5S$  or  $3 \times 9S$ depending on changes in  $S_t$  relative to  $I_t$ . The shorter filters are preferred if the seasonal component changes a lot compared to the irregular component.

(iv) Calculating the final seasonally adjusted series (of the B iteration):

 $A_t^{(2)} = O_t - S_t^{(2)}$ 

STATISTICS DENMARK

# X-11: Step 3 (1 of 1)

(i) Calculating final trend using again a Henderson filter

$$T_t^{(3)} = \sum_{i=-H}^{H} h_i A_{t+i}^{(2)}$$

(ii) Calculating final irregular component:  $I_t^{(3)} = A_t^{(2)} - T_t^{(3)}$ 

such that the final decomposition is

$$\tilde{O}_t = T_t^{(3)} + S_t^{(2)} + I_t^{(3)}$$



#### **Iterative use of the basic X-11 algorithm**

- The X-11 algorithm is used 3 times to identify extreme values for temporary linearization of the series:
  - The B iteration finds preliminary extreme values
  - The C iteration finds final extreme values
  - The D iteration is the actual seasonal adjustment
- Extreme values of SI<sub>t</sub> are replaced
- Therefore  $\tilde{O}_t = T_t^{(3)} + S_t^{(2)} + I_t^{(3)} \neq O_t$
- $\tilde{O}_t$  from the B iteration is the starting point for the C iteration, and  $\tilde{O}_t$  from the C iteration is the starting point for the D iteration.

