Introduction to Seasonal adjustment

Decomposition of a time series

-What is seasonality?

- Unobserved components
- Additive or multiplicative model

What is seasonality

- No 100\% definition!
- Fluctuations repeating themselves (more or less precisely) from year to year
- Intuitively, seasonality should sum to zero within a year (for an additive decomposition)

Simulated time series with seasonality

Model for unobservable components

- Additive model

$$
O_{t}=T_{t}+S_{t}+I_{t}=A_{t}+S_{t}
$$

- Multiplicative model

$$
O_{t}=T_{t} \cdot S_{t} \cdot I_{t}=A_{t} \cdot S_{t}
$$

Where O is the pre-adjusted series, t is the time,
T is the trend-cycle, S is the seasonal component, I is the irregular component (white noise), and A is the seasonally adjusted series.

No unique decomposition without conditioning!

Methods and software

- X-12-ARIMA
- Relatively few assumptions
- Non-parametric approach
- TRAMO/SEATS
- Uses a mathematical model with many assumptions
- Parametric approach

Demetra

- Developed by (not at) Eurostat
- Graphical interface for X-12-ARIMA and TRAMO/SEATS
- Currently under development - will feature functions for documenting seasonal adjustment

Pre-adjustment

Calendar effects and outliers

The flow in seasonal adjustment

1. Transformation (possibly)

- To ensure stationarity (poss. log.transformation)

2. Pre-adjustment

- Prepare for estimation of the season

3. ARIMA model

- Find the model with the best description of the preadjusted time series

4. Forecast the series

- Forecast with the ARIMA model

5. Decomposition

- Split up in Trend, Season and Irregular component

Notation

Two possible models

- Additive: $\mathrm{O}_{\mathrm{t}}=\mathrm{T}_{\mathrm{t}}+\mathrm{S}_{\mathrm{t}}+\mathrm{I}_{\mathrm{t}}=\mathrm{A}_{\mathrm{t}}+\mathrm{S}_{\mathrm{t}}$
- Multiplikative (log.transformed):

$$
O_{t}=T_{t} \cdot S_{t} \cdot I_{t}=A_{t} \cdot S_{t}
$$

where
O_{t} - the pre-adjusted time series
T_{t} - the trend
S_{t} - the seasonal component
I_{t}-the irregular component
A_{t} - the seasonal adjusted series

Regression

Normal regression $X_{t}=\beta Z_{t}+O_{t}$

- X_{t} the original series
$-Z_{t}$ explanatory variable (one or more)
- β regression coefficient (one or more)
- O_{t} residuals (residual variation)

Pre-adjustment

$$
X_{t}=\beta_{1} Z_{1 t}+\ldots+\beta_{k} Z_{k t}+O_{t}
$$

where
X_{t} - the original series
$Z_{\text {it }}$ - explicatory variables
β_{i} - regression coefficients
O_{t} - the preadjusted series (follows
an ARIMA model)

Explicatory variables - Calendar

- Months/Quarters are not comparable
- The length of the month differs
- The more working days the higher production
- Leap year
- Type of the day differs
- Sundays/Holy days versus normal trading days
- Trade is bigger Saturday than Monday
- Holydays can move (moving seasonality)
- Easter
- Countries are not comparable
- Easter in western and eastern Catholic church
- Ramadan
- Comparability in the EU (Eurostat)

Explicatory variables - External reasons

- Changes caused by external reasons:
- Outliers (extreme/not typical observations)
- Reduced sale of ice cream in a cold summer
- Strike
- Freezing days (construction business)
- Level shift (permanent change)
- Changes in duties and taxes e.g. on cars
- Financial crisis
- Transitory changes (temporary/provisional)
- Felling of timber after a storm
- Rise in price on e.g. coffee

Types of Pre-adjustment - 1

Two types of Pre-adjustments:

- Temporary corrections
- Additive outliers (AO)
- Level shift (LS)
- Transitory change (TC)

External reasons

- Ramp
- User Defined
- Permanent corrections
- Trading days
- Easter
- National Holy days
- Leap Year
- User Defined

Types of Pre-adjustment - 2

Difference between permanent and temporary corrections

After the decomposition

- temporary corrections will be taken back in the seasonal adjusted series (Level shifts e.g.)
- These things have happened in the real world
- permanent corrections will not be taken back in the seasonal adjusted series
- The purpose is to compare months/quarters (standard months, standard quarters)

Explicatory variables

- Temporary corrections

Level shift (LS)

Transitory change (TC)

Ramp

Explicatory variables

- Permanent corrections

- The Production in February is on average 28.25 days.
- In normal years the Production will be increased from 28 days to 28.25 days
- In Leap years the Production will be reduced from 29 days to 28.25 days.

Explicatory variables

- Permanent corrections
- Trading Days:
- Z_{t} is the number of trading days in each month

$$
\text { e.g. } Z_{t}=(20,23,21,22,22,21,23, \ldots)
$$

- $Z_{1 t} \ldots Z_{7 t}$ is the number of Mondays ... Sundays
e.g. $Z_{1 t}=(4,4,5,4,4,5,4,5,4, \ldots)$
- All months are changed to include the same amount of trading days or days of each type (standard month).

Pre-adjustment in Demetra

- Automatic outlier/calendar correction:
- LS/AO/TC, Easter, Leap year/ Trading days (7,6,2,1 regressors) via regression
- Pre test for significance (t-test)
- Effect included if significant

X-11

An algorithm for decomposition

$n \times m$-terms moving average

- An nx m moving average is an mterm simple average taken over n consecutive sequential spans.

$$
\begin{aligned}
\bar{X}_{t}^{3 \times 3}= & \frac{1}{3}\left(\frac{X_{t-2}+X_{t-1}+X_{t}}{3}+\frac{X_{t-1}+X_{t}+X_{t+1}}{3}+\frac{X_{t}+X_{t+1}+X_{t+2}}{3}\right) \\
& =\frac{1}{9} X_{t-2}+\frac{2}{9} X_{t-1}+\frac{3}{9} X_{t}+\frac{2}{9} X_{t+1}+\frac{1}{9} X_{t+2}
\end{aligned}
$$

Filters in X-11

- Estimation of trend-cycle from raw series: 2×12 (monthly figures) or 2×4 (quarterly figures)
- Estimation of seasonal component from detrended series (SI-ratio): $3 \times 3 S, 3 \times 5$ S or 3×9 (only monthly series)

The X-11 algorithm

- Linear filters during three steps
- Step 1: Initial estimates
- Step 2: Final seasonal component
- Step 3: Final trend and irregular component
- Let O_{t} be the pre-adjusted series and assume an additive decomposition model:

$$
O_{t}=T_{t}+S_{t}+I_{\mathrm{t}}=A_{t}+S_{t}
$$

- The following slides show the decomposition of a monthly series...

X-11: Step 1 (1 of 3)

(i) Calculating initial trend estimate using 2×12 moving average:

$$
T_{t}^{(1)}=\frac{1}{24} O_{t-6}+\frac{1}{12} O_{t-5}+\cdots+\frac{1}{12} O_{t}+\cdots+\frac{1}{12} O_{t+5}+\frac{1}{24} O_{t+6}
$$

(ii) Calculating initial SI-ratio:

$$
\left(S_{t}+I_{t}\right)^{(1)}=S I_{t}^{(1)}=O_{t}-T_{t}^{(1)}
$$

X-11: Step 1 (2 of 3)

(iii) Calculating initial seasonal component using 3×3 seasonal average:

$$
\tilde{S}_{t}^{(1)}=\frac{1}{9} S I_{t-24}^{(1)}+\frac{2}{9} S I_{t-12}^{(1)}+\frac{3}{9} S I_{t}^{(1)}+\frac{2}{9} S I_{t+12}^{(1)}+\frac{1}{9} S I_{t+24}^{(1)}
$$

followed by normalization:

$$
S_{t}^{(1)}=\tilde{S}_{t}^{(1)}-\left(\frac{1}{24} \tilde{S}_{t-6}^{(1)}+\frac{1}{12} \tilde{S}_{t-5}^{(1)}+\cdots+\frac{1}{12} \tilde{S}_{t-5}^{(1)}+\frac{1}{24} \tilde{S}_{t+6}^{(1)}\right)
$$

X-11: Step 1 (3 of 3)

(iv) Calculating preliminary seasonally adjusted series:

$$
A_{t}^{(1)}=O_{t}-S_{t}^{(1)}
$$

- Choice of filters used during Step 1 does not depend on the series - they are fixed.

X-11: Step 1 (3 of 3)

(iv) Calculating preliminary seasonally adjusted series:

$$
A_{t}^{(1)}=O_{t}-S_{t}^{(1)}
$$

- Choice of filters used during Step 1 does not depend on the series - they are fixed.

X-11: Step 2 (1 of 3)

(i) Calculate intermediary trend using something called a Henderson filter. A different type of moving average, which empirically has proven useful.
(ii) Calculate SI-ratio:

$$
\left(S_{t}+I_{t}\right)^{(2)}=S I_{t}^{(2)}=O_{t}-T_{t}^{(2)}
$$

X-11: Step 2 (2 of 3)

(iii) Calculating seasonal factor using seasonal average (typically 3×5):

$$
\begin{aligned}
\tilde{S}_{t}^{(2)}= & \frac{1}{15} S I_{t-36}^{(2)}+\frac{2}{15} S I_{t-24}^{(2)}+\frac{3}{15} S I_{t-12}^{(2)} \\
& +\frac{3}{15} S I_{t}^{(2)}+\frac{3}{15} S I_{t+12}^{(2)}+\frac{2}{15} S I_{t+24}^{(2)}+\frac{1}{15} S I_{t+36}^{(2)}
\end{aligned}
$$

followed by normalization:

$$
S_{t}^{(2)}=\tilde{S}_{t}^{(2)}-\left(\frac{1}{24} \tilde{S}_{t-6}^{(2)}+\frac{1}{12} \tilde{S}_{t-5}^{(2)}+\cdots+\frac{1}{12} \tilde{S}_{t-5}^{(2)}+\frac{1}{24} \tilde{S}_{t+6}^{(2)}\right)
$$

X-11: Step 2 (3 of 3)

Seasonal filter is either $3 \times 3 S, 3 \times 5 S$ or $3 \times 9 S$ depending on changes in S_{t} relative to I_{t}. The shorter filters are preferred if the seasonal component changes a lot compared to the irregular component.
(iv) Calculating the final seasonally adjusted series (of the B iteration):

$$
A_{t}^{(2)}=O_{t}-S_{t}^{(2)}
$$

X-11: Step 3 (1 of 1)

(i) Calculating final trend using again a Henderson filter

$$
T_{t}^{(3)}=\sum_{i=-H}^{H} h_{i} A_{t+i}^{(2)}
$$

(ii) Calculating final irregular component:

$$
I_{t}^{(3)}=A_{t}^{(2)}-T_{t}^{(3)}
$$

such that the final decomposition is

$$
\tilde{O}_{t}=T_{t}^{(3)}+S_{t}^{(2)}+I_{t}^{(3)}
$$

Iterative use of the basic X-11 algorithm

- The X-11 algorithm is used 3 times to identify extreme values for temporary linearization of the series:
- The B iteration finds preliminary extreme values
- The C iteration finds final extreme values
- The D iteration is the actual seasonal adjustment
- Extreme values of $S I_{t}$ are replaced
- Therefore $\tilde{O}_{t}=T_{t}^{(3)}+S_{t}^{(2)}+I_{t}^{(3)} \neq O_{t}$
- \tilde{O}_{t} from the B iteration is the starting point for the C iteration, and \widetilde{O}_{t} from the C iteration is the starting point for the D iteration.

