Statistical disclosure control and micro data

Methods

Contents

- SDC-methods
 - (sub)sampling
 - data swapping
 - Categorical variables
 - recoding, suppression, PRAM
 - Continuous variables
 - top/bottom coding, micro-aggregation, noise addition
- Miscellaneous topics

SDC methods First thing to do

Remove direct/formal identifiers

Stienttistnstein, Scientist, ...

Erainechulte Nordholt, Trainer, ...

Seriate Giessing, Trainer, ...

Alexanderaderginowska, Course leader, ...

PretereP, aul de Wolf, Trainer, ...

SDC methods (Sub)sampling

Release only a sample of the records

- Reduces the effect of response knowledge on original sample
- Extreme local suppression: suppress all values in certain (stochastic) set of records

NB:

effect on sampling weights?

SDC methods data swapping

Select two records *i* and *j*

Interchange ('swap') scores on variable(s) of records *i* and *j*

Several selection schemes possible

- (Approximately) preserving certain statistics (e.g., up to *p*-th order interactions)
- Random (SRS, STSI, ...)
- Rank swapping (in μ-ARGUS)

data swapping (example)

records consisting of three parts:

- x : defines geographic area
- y: household characteristics

(relating number of persons in household, race, age)

z : all other variables

Assumption:

x and z conditionally independent, given y

Swap households with same *y* between areas

Categorical (recoding)

Usually *global* recoding

- combine certain categories to new category
- apply this to entire data set

Goal:

increase (population) frequency

Example:

Occupations 'Mayor' and 'Police Officer'

recoded into

Occupation 'Public servant'

Platylor, Seuvante Studapest,	
Poblie Sefficæn,t, Bludæppess,t,	

Categorical (suppression)

Local suppression

- Replace score by 'missing'
- Applied to one record at a time

Example:

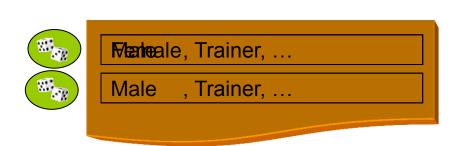
record 1: Mayor, Blod Aprestable (Missing) record 2: Police Officer, Blud appessit Mayor, Budapest, ...

Police Officer, Budapest, ...

Categorical (suppression)

How to choose variables to be suppressed?

Multiple unsafe combinations in one record


E.g., Mayor × Budapest (work) and Budapest (work) × Mayor's residence

'Entropy' (number of categories/information loss): suppress Budapest
'Priority/weight':

suppress Mayor and Mayor's residence

Categorical (PRAM)

Post Randomisation Method

Categorical variable ξ with categories 1, ..., K

Define transition probabilities $p_{kl} = P(X = I | \xi = k)$ I.e., Markov matrix *P* with p_{kl} as entries.

PRAM: the score *m* on ξ is replaced by a score drawn from the distribution $p_{m1}, ..., p_{mK}$. (for each record independently)

Categorical (PRAM)

Since *P* is known, correction is possible

Compare Randomised Response or Misclassification

E.g., T_{ξ} is original frequency table of ξ , T_X is frequency table after PRAM

Then

$$E(T_X \mid \xi) = P^t T_{\xi}$$

l.e.,

 $(P^{-1})^t T_X$

is (conditionally) unbiased estimator of T_{ξ}

Categorical (PRAM)

Variable Gender (male = 1, female = 2) p(1,1) = p(2,2) = 0.9p(1,2) = p(2,1) = 0.1

Original file: $T_{\xi} = (110, 90)$ Perturbed file: $T_{\chi} = (107, 93)$ (in expectation: (108, 92)) Unbiased estimate: $(P^{-1})^{t}T_{\chi} = (108.75, 91.25)$ rounded: (109, 91)

Categorical (PRAM)

How to choose P?

- Try to preserve certain statistics (in expectation)
- Exclude illogical changes

 e.g., set transition probability
 unmarried + age < 5
 to
 married + age < 5
 - equal to 0
- Make sure that perturbed file is 'safe'

Categorical (PRAM)

Remarks:

- Every application of PRAM produces different file
- Possible to adjust analyses (burden to user)
- In μ -ARGUS only limited possibilities for P
 - Off-diagonal all equal
 - Band-matrix

Exact values (usually) not known to attacker

Partition variable into classes

Treat partitioned variable as categorical

SDC methods Continuous

Example

Age: exact age not known

partition into 5-years classes if 5-years class occurs often enough: Safe if not: Not safe and hence 'do something' (suppress)

Continuous (top/bottom coding)

Extreme scores may be identifying

Example: income

Possible method:

Replace all scores above/below certain threshold with that threshold

Continuous (top/bottom coding)

(Top coding)

Estimate the probability of occurrence of a value above a certain threshold

Deduce the expected number *î* of occurrences (in population) above that threshold

Choose threshold such that \hat{N} is 'large' enough

Continuous (micro-aggregation)

Univariate:

• order the data set according to variable X

 $x_1 < x_2 < \dots < x_N$

- form groups of consecutive values
 - fixed group size
 - variable group sizes (e.g., use within group variability, in μ -ARGUS)
- replace each score with group average

Continuous (micro-aggregation)

Note:

• Preserves totals

But:

• (Re-)grouping 'similar' records (households, ...)

Forming groups:

- smaller groups \Rightarrow less loss of information
- smaller groups \Rightarrow less protection

Continuous (micro-aggregation)

Extensions:

- Multivariate case (clustering)
- Using other value than group mean (possible loss of preservation of total)

Note:

• Dependence *between* records

Continuous (noise addition)

Use a model to add noise to scores (one record at a time)

E.g., additive noise:

replace score *y* with $y + \varepsilon$

where ε is drawn from a certain distribution

E.g., multiplicative noise:

replace score y with λy where λ is drawn from a certain distribution

Miscellaneous topics

Data perturbing techniques on

- Identifying variables
- Sensitive variables

(e.g., PRAM, noise addition, micro-aggregation)

Rounding

- Continuous variables
- Sort of micro-aggregation/noise addition
- Aesthetic?

Miscellaneous topics

Sampling weights:

Noise addition

- 'Enough' different weights
- Overlapping intervals
- Preserving goal of weight inclusion