Doner based imputation methods with apllications in R Aksel Thomsen (akt@dst.dk) **Statistics Denmark** 2020/4/15 (original 2020/12/7)

Outline

1. Theory

- Imputation in general (recap)
- Donor-based imputation methods
- 2. Practical
 - Apply methods
 - $\circ~$ How to in R

Theory

General theory

• Item or **partiel** non-response

General theory

- Item or **partiel** non-response
- Donor vs model based
- Stochastic or deterministic
- Hot- or cold-deck

General theory

- Item or **partiel** non-response
- Donor vs model based
- Stochastic or deterministic
- Hot- or cold-deck
- Deductive (logical) imputation

Donor imputation

Two general approaches:

- 1. Nearest neighbor
 - KNN
 - Distance in multidimensional space
 - Predictive mean matching
- 2. Random draws (stratified)

Donor imputation

When is a donor good enough?

And can different donors be used for the same observations?

Donor imputation

When is a donor good enough?

And can different donors be used for the same observations?

3 cases:

- 1. Complete:
 - All imputed variables complete for doner
 - Same donor for all variables
- 2. Univariate
 - Variables are imputed one by one
 - Seperate donors for each variable
- 3. Multivariate
 - Donor pool for each missingness value
 - Same donor for all variables

KNN

- Find the K nearest neighbors
 - K = 1: Pure donor imputation
 - K > 1: "Average" of the donors

Predictive mean matching

- Mix between model and donor based imputation
- Method:
 - 1. Estimate a model predicting the missing variable(s)
 - 2. Form predictions for all observation
 - 3. Donor is the observation with the closest predicted value
- From here a KNN with K = 1
- A way to redefine a multidimensional problem into a one dimensional problem

Example: Linear prediction (1/2)

Example: Linear prediction (2/2)

Random draws

- Sequential or **random**
- With or without replacement or maximum donations per donor

Practical

Simulated LFS

```
library(tidyverse)
lfs <- read_csv("example.csv", col_types = "inffnn") %>%
    as.data.frame()
```

head(lfs)

id	age	gender	region	employed	hours
1	64	F	W	1	40
2	77	Μ	S	0	NA
3	83	F	S	NA	NA
4	24	F	W	1	40
5	65	F	Ν	1	40
6	42	Μ	E	0	NA

summary(lfs)

##	id	age	gender	region	employed
##	Min. : 1.0	Min. :18.00	F:259	W:164	Min. :0.0000
##	1st Qu.:125.8	1st Qu.:34.00	M:241	S:132	1st Qu.:0.0000
##	Median :250.5	Median :47.00		N: 81	Median :1.0000
##	Mean :250.5	Mean :49.55		E:123	Mean :0.6526
##	3rd Qu.:375.2	3rd Qu.:65.00			3rd Qu.:1.0000
##	Max. :500.0	Max. :90.00			Max. :1.0000
##					NA's :51
##	hours				
##	Min. :20.00				
##	1st Qu.:39.00				
##	Median :40.00				
##	Mean :37.24				
##	3rd Qu.:40.00				
##	Max. :40.00				
##	NA's :207				

summary(lfs)

##	id	age	gender	region	empl	.oyed
##	Min. : 1.0	Min. :18.00	F:259	W:164	Min.	:0.0000
##	1st Qu.:125.8	lst Qu.:34.00	M:241	S:132	1st Qu.	:0.0000
##	Median :250.5	Median :47.00		N: 81	Median	:1.0000
##	Mean :250.5	Mean :49.55		E:123	Mean	:0.6526
##	3rd Qu.:375.2	3rd Qu.:65.00			3rd Qu.	:1.0000
##	Max. :500.0	Max. :90.00			Max.	:1.0000
##					NA's	:51
##	hours					
##	Min. :20.00					
##	1st Qu.:39.00					
##	Median :40.00					
##	Mean :37.24					
##	3rd Qu.:40.00					
##	Max. :40.00					
##	NA's :207					

Partial non-response!

R Matrix

```
R <- lfs %>%
  mutate(across(-id, ~ negate(is.na)(.) %>% as.numeric()))
head(R)
```

id	age	gender	region	employed	hours
1	1	1	1	1	1
2	1	1	1	1	0
3	1	1	1	0	0
4	1	1	1	1	1
5	1	1	1	1	1
6	1	1	1	1	0

R %>% select(-id) %>% summarise_all(mean)

age	gender	region	employed	hours
1	1	1	0.898	0.586

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	265
1	TRUE	28
NA	FALSE	28
NA	TRUE	23

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	265
1	TRUE	28
NA	FALSE	28
NA	TRUE	23

Routing: employed = 0 => hours not asked (NA is valid)

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	265
1	TRUE	28
NA	FALSE	28
NA	TRUE	23

Routing: employed = 0 => hours not asked (NA is valid)

Logical imputation: hours answered => the person is employed

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	265
1	TRUE	28
NA	FALSE	28
NA	TRUE	23

Routing: employed = 0 => hours not asked (NA is valid)

Logical imputation: hours answered => the person is employed

51 missing cells left

Simputation

- R package to make imputations easy, covers:
- Model based (optionally add [non-]parametric random residual)
 - linear regression
 - robust linear regression
 - ridge/elasticnet/lasso regression
 - CART models (decision trees)
 - Random forest
- Multivariate imputation
 - Imputation based on the expectation-maximization algorithm
 - missForest (=iterative random forest imputation)
- **Donor** imputation (including various donor pool specifications)
 - k-nearest neigbour (based on gower's distance)
 - sequential hotdeck (LOCF, NOCB)
 - random hotdeck
 - Predictive mean matching
- Other
 - (groupwise) median imputation (optional random residual)
 - Proxy imputation: copy another variable or use a simple transformation to compute imputed values.
 - Apply trained models for imputation purposes.

Imputation strategy

- 1. Deductive: If answered hours, then the person is employed.
- 2. Two step donor imputation:
 - 1. Employment: Predictive mean matching
 - 2. Hours: Random hot-deck donor

library(simputation)

lfs_imp <- lfs %>%
 impute_proxy(formula = employed ~ hours > 0)

library(simputation)

lfs_imp <- lfs %>%
 impute_proxy(formula = employed ~ hours > 0)

lfs_imp %>% count(employed, is.na(hours))

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	293
1	TRUE	28
NA	TRUE	23

```
lfs_imp <- lfs %>%
impute_proxy(formula = employed ~ hours > 0) %>%
impute_pmm(formula = employed ~ age + gender + region)
```

```
lfs_imp <- lfs %>%
impute_proxy(formula = employed ~ hours > 0) %>%
impute_pmm(formula = employed ~ age + gender + region)
```

lfs_imp %>% count(employed, is.na(hours))

employed	is.na(hours)	n
0	TRUE	165
1	FALSE	293
1	TRUE	42

lfs_imp <- lfs %>%
impute_proxy(formula = employed ~ hours > 0) %>%
impute_pmm(formula = employed ~ age + gender + region) %>%
impute_rhd(formula = hours ~ age + gender + region | employed)

```
lfs_imp <- lfs %>%
impute_proxy(formula = employed ~ hours > 0) %>%
impute_pmm(formula = employed ~ age + gender + region) %>%
impute_rhd(formula = hours ~ age + gender + region | employed)
```

lfs_imp %>% count(employed, is.na(hours))

employed	is.na(hours)	n
0	TRUE	165
1	FALSE	314
1	TRUE	21

lfs_imp %>% filter(employed==1, age==21)

id	age	gender	region	employed	hours
30	21	Μ	W	1	NA
79	21	F	S	1	40
97	21	Μ	S	1	40
265	21	F	W	1	40
357	21	F	S	1	31

lfs_imp %>% filter(employed==1, age==21)

id	age	gender	region	employed	hours
30	21	Μ	W	1	NA
79	21	F	S	1	40
97	21	Μ	S	1	40
265	21	F	W	1	40
357	21	F	S	1	31

No donors in the strata for id = 21

lfs_imp %>% filter(employed==1, age==21)

id	age	gender	region	employed	hours
30	21	Μ	W	1	NA
79	21	F	S	1	40
97	21	Μ	S	1	40
265	21	F	W	1	40
357	21	F	S	1	31

No donors in the strata for id = 21

"Easy" solution => Random donor in 10 year age group

```
lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0) %>%
  impute_pmm(formula = employed ~ age + gender + region) %>%
  impute_rhd(formula = hours ~ age + gender + region | employed) %>%
  mutate(age10 = age %/% 10) %>%
  impute_rhd(formula = hours ~ age10 | employed) %>%
  select(-age10)
```

```
lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0) %>%
  impute_pmm(formula = employed ~ age + gender + region) %>%
  impute_rhd(formula = hours ~ age + gender + region | employed) %>%
  mutate(age10 = age %/% 10) %>%
  impute_rhd(formula = hours ~ age10 | employed) %>%
  select(-age10)
```

lfs_imp %>% count(employed, is.na(hours))

employed	is.na(hours)	n
0	TRUE	165
1	FALSE	335

New micro data

lfs_imp %>% anti_join(lfs, by = names(lfs_imp)) %>% slice_sample(n=10

id	age	gender	region	employed	hours
346	53	F	W	1	36
180	19	Μ	E	1	40
114	86	F	E	0	NA
279	31	Μ	Ν	1	40
16	18	F	W	1	40
93	33	F	S	1	32
142	55	Μ	S	1	40
315	88	F	E	0	NA
31	31	F	S	1	40
82	85	Μ	Ν	1	40

summary(lfs_imp)

##	id	age	gender	region	employed	hours
##	Min. : 1.0	Min. :18.00	F:259	W:164	Min. :0.00	Min. :20
##	1st Qu.:125.8	1st Qu.:34.00	M:241	S:132	1st Qu.:0.00	1st Qu.:37
##	Median :250.5	Median :47.00		N: 81	Median :1.00	Median :40
##	Mean :250.5	Mean :49.55		E:123	Mean :0.67	Mean :37
##	3rd Qu.:375.2	3rd Qu.:65.00			3rd Qu.:1.00	3rd Qu.:40
##	Max. :500.0	Max. :90.00			Max. :1.00	Max. :40
##						NA's :16

Alternative ML solution

```
lfs_mf <- lfs %>%
  mutate(hours = if_else(employed == 0, 0, hours),
        employed = as.factor(as.character(employed))) %>%
  as.data.frame() %>%
  impute_mf(formula = . - id ~ . - id) %>%
  mutate(employed = as.numeric(as.character(employed)),
        hours = if_else(hours == 0, NA_real_, hours))
```

missForest iteration 1 in progress...done!
missForest iteration 2 in progress...done!
missForest iteration 3 in progress...done!
missForest iteration 4 in progress...done!

lfs_mf %>% count(employed, is.na(hours))

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	344

Questions?

(ressources next slide)

Ressources

Presentation: GitHub

EU / MEMOBUST: Handbook on imputation

CRAN Task View: Official Statistics & Survey Methodology

Mark van der loo: simputation: Simple Imputation

RStudio: Tidyverse collection of R packages

Awesome official statistics software: GSBPM & R packages