Statistical disclosure control and tabular data

Problems and criteria

Contents

- Frequency count tables
- Stating the problem(s)
- Sensitive categories
- Group disclosure
- Possible Criteria
- Magnitude tables
- Stating the problem(s)
- Possible criteria
- Sensitivity measures
- Survey tables
- Linked tables

Frequency tables

Frequency table:
each cell-value T_{C} represents the number of respondents that fall into that cell

Example: Dutch population, 1/1/2016

	Male	Female	Total
North	856,917	861,473	$1,718,390$
East	$1,782,445$	$1,801,254$	$3,583,699$
South	$1,803,518$	$1,811,491$	$3,615,009$
West	$3,974,255$	$4,087,767$	$8,062,022$
Total	$8,417,135$	$8,561,985$	$16,979,120$

SDC Tabular data, problems and criteria

Frequency tables

Cell-value not sensitive

Spanning variables: identifying
(Region, gender, type of business,...)
sensitive
(Sexual behaviour, criminal offence, ...)

Frequency tables

(Spanning) variables:
one sensitive
remaining identifying
Example: number of ship-owners

Environmental offence				
Region	Yes	No	Total	
\ldots				
A	9	0	9	
\ldots				

SDC Tabular data, problems and criteria

Frequency tables

Group disclosure:

All ship-owners in region A committed an environmental offence

Conclusion:
Not all respondents should score on a sensitive category
Note:

Depending on absolute number?

(Info on large group = statistics)

SDC Tabular data, problems and criteria

Frequency tables

Example, continued

number of ship-owners

Environmental offence				
Region	Yes	No	Total	
\ldots				
B	14	2	16	
\ldots				

SDC Tabular data, problems and criteria

Frequency tables

Still:

non-offensive ship-owners know quite surely that all other ship-owners in region B committed an environmental offence

Conclusion:
There should not be too many respondents that score on a sensitive category

Frequency tables

Possible criterion:

Fraction of respondents that score on a sensitive category should be less than $p \%$
to increase the uncertainty

$$
\text { E.g., } p=40
$$

Frequency tables

Example, continued

number of ship-owners

Environmental offence				
Region	Yes	No	Total	
\ldots				
C	1	1	2	
\ldots				

SDC Tabular data, problems and criteria

Frequency tables

Still:
Non-offensive ship-owner knows that the other one committed an environmental offence

Possible criterion:
If respondents score on a sensitive category, at least \boldsymbol{n} respondents should score on non-sensitive categories

Frequency tables

Example, continued

Non-offenders now do not know which other ship-owner committed the offence

number of ship-owners

Environmental offence				
Region	Yes	No	Total	
\ldots				
D	1	9	10	
\ldots				

SDC Tabular data, problems and criteria

Frequency tables

'Summary':
scores should be sufficiently spread over all categories

Cells with only one or two, not necessarily unsafe!

Causes of death							
Region	a	b	c	d	e	Total	
\ldots							
F	1	3	1	2	3	10	
\ldots							

Magnitude tables

Magnitude table:
each cell-value T_{C} represents the sum of the score of the respondents that fall into that cell

Magnitude tables (example)

Turnover ($10^{6} €$) of instrument producing companies

Region	number of respondents									
	A	B	C	D	Total					
Harps	58	151	47	2	36	98	89	23	230	274
Organs	71	16	124	21	24	9	31	8	250	54
Pianos	92	5	157	12	59	7	28	1	336	25
Other	800	302	934	362	651	287	742	227	3127	1178
Total	1021	474	1262	397	770	401	890	259	3943	1531

SDC Tabular data, problems and criteria

Magnitude tables

Law / agreement:
No 'sensitive' information on single respondents should be published

Problem:
Cell consisting of one contribution

Piano-producing company in region D

Magnitude tables

How about the two harp-producing companies in region B ?

Region					
	A	B	C	D	Total
Harps	58	47	36	89	230
Organs	71	124	24	31	250
Pianos	92	157	59	28	336
Other	800	934	651	742	3127
Total	1021	1262	770	890	3943

SDC Tabular data, problems and criteria

Magnitude tables

How about the two harp-producing companies in region B ?

If they know they are the only two, they can disclose each others contribution!

Magnitude tables

How about the five piano-producing companies in region A?

Region					
	A	B	C	D	Total
Harps	58	47	36	89	230
Organs	71	124	24	31	250
Pianos	92	157	59	28	336
Other	800	934	651	742	3127
Total	1021	1262	770	890	3943

SDC Tabular data, problems and criteria

Magnitude tables

How about the five piano-producing companies in region A?

Suppose:
Company X: 81,000,000 €
Company Y: 5,000,000 €
92-5 = $87 \mathrm{mln} €$ is within 7.4% !
Other three: $\quad 2,000,000 €$ each
Total: $\quad 92,000,000 €$

Magnitude tables

Sensitive cells:
one contribution
two contributions
one or more dominating contributions

Need:

Sensitivity measure

Magnitude tables

Examples of sensitivity measures:

- minimum number rule (threshold rule)
- (n, k) dominance rule \qquad Concentration
- p\%-rule \longleftarrow rules
- p/q-rule (prior-posterior rule)

Magnitude tables

Threshold rule

A cell C is unsafe if its value consists of less than k contributions
E.g., with $k=3$:
piano-producing companies in regions B and C

Magnitude tables

Concentration rules only make sense if the size of the variable is 'identifying'!
I.e., if 'intruders' know who the largest respondents are.

Example:
Profit
Turnover

Magnitude tables

(n, k) dominance rule
A cell is unsafe, if the largest n contributions in that cell amount to more than $k \%$ of the cell-total:

$$
\sum_{i=1}^{n} x_{i}>\frac{k}{100} \sum_{i=1}^{N(C)} x_{i}
$$

Interpretations:

- the largest n companies dominate the cell-total too much
- the $(n-1)$ coalition of x_{2}, \ldots, x_{n} is able to estimate x_{1} too accurately

Magnitude tables

(n, k) dominance rule
(n, k)-dominance rule implies

$$
\text { at least }\left\lceil\frac{100 n}{k}\right\rceil \text { contributions }
$$

Follows from case where all contributions same size
E.g., (3,70)-rule implies at least 5 contributions

3 equal contributions: top 3 100\%
4 equal contributions: top 3 75\%
5 equal contributions: top 3 60\%

Magnitude tables

(n, k) dominance rule
How about the five piano-producing companies in region A, using a $(2,85)$ dominance rule?

Suppose:
Company X: 81,000,000 €
Company Y: 5,000,000 €
Other three: 2,000,000 € each
Total: 92,000,000 €
Unsafe: $(81+5) / 92=0.93>0.85$

Magnitude tables

p\%-rule
A cell is unsafe if some respondent to that cell can estimate another respondent to that cell within $p \%$ of its true value

Straightforward interpretation:
contributions should not be estimated too accurately

Magnitude tables
 p\%-rule

How will a contributor estimate another?

Second largest, x_{2}, will try to estimate the largest, x_{1}, by

$$
T_{C}-x_{2}
$$

l.e., the cell is unsafe if

$$
\left(T_{C}-x_{2}\right)-x_{1} \leq \frac{p}{100} x_{1}
$$

Magnitude tables

p\%-rule

How about the five piano-producing companies in region A , using a 10%-rule?

Suppose:
Company X: 81,000,000 €
Company Y: 5,000,000 €
Other three: $\quad 2,000,000 €$ each
Total: 92,000,000 €
Unsafe: $((92-5)-81) / 81=0.074<0.10$

Magnitude tables
 p/q-rule

A cell is unsafe if some respondent in the cell (knowing all other contributions up to $q \%$) can estimate another respondent to that cell within $p \%$ of its true value

Used to model a-priori knowledge about other contributions (can be used to obtain even more accurate estimates)

Magnitude tables

- dominance rule
- p\%-rule
- p/q-rule
are examples of so called
linear sensitivity measures

SDC Tabular data, problems and criteria

Magnitude tables

Linear sensitivity measures:

$$
S(C)=\sum_{i=1}^{N(C)} \lambda_{i} x_{i}
$$

with $N(C)$ the number of contributions to cell C, λ_{i} a set of constants
and $x_{1} \geq x_{2} \geq \ldots \geq x_{N(\mathcal{C})}(\geq 0)$ the decreasingly ordered contributions

Choose λ_{i} such that cell C is unsafe if $S(C)>0$

Magnitude tables

Often additionally sub-additivity is assumed:

$$
S(X+Y) \leq S(X)+S(Y)
$$

i.e.,
by combining two cells, the sensitivity will always be smaller or equal to the sum of the individual sensitivities
N.B.: if and only if λ_{i} are non-increasing

Magnitude tables

(n, k) dominance rule
Dominance rule

$$
S_{D}(C)=\left(1-\frac{k}{100}\right) \sum_{i=1}^{n} x_{i}-\frac{k}{100} \sum_{i=n+1}^{N_{C}} x_{i}
$$

SO

$$
\lambda_{i}=\left\{\begin{aligned}
1-\frac{k}{100} & i=1, \ldots, n \\
-\frac{k}{100} & i=n+1, \ldots, N_{C}
\end{aligned}\right.
$$

- Sub-additive
- $x_{i} \geq 0$ needed to make sense

SDC Tabular data, problems and criteria

Magnitude tables

p\%-rule
p\%-rule

$$
S_{p}(C)=\frac{p}{100} x_{1}-\sum_{i=3}^{N_{C}} x_{i}
$$

SO

$$
\lambda_{i}=\left\{\begin{array}{rl}
\frac{p}{100} & i=1 \\
0 & \\
i=2 \\
-1 & i=3, \ldots, N_{C}
\end{array}\right.
$$

- Sub-additive
- $x_{i} \geq 0$ needed to make sense

SDC Tabular data, problems and criteria

Magnitude tables

p\%-rule

Note:

- extendable to n-coalitions:

$$
S_{p}(C)=\frac{p}{100} x_{1}-\sum_{i=n+2}^{N_{C}} x_{i}
$$

($n=1$ is 'old' $p \%$-rule)

SDC Tabular data, problems and criteria

Magnitude tables

Both $p \%$ and p / q rule are easily extended to situation with authorisations (waivers)
(cell unsafe due to company that allows its contribution to be released)
(n, k) dominance rule not!

Reason: interpretation in terms of relative error

SDC Tabular data, problems and criteria

Magnitude tables

(n, k) dominance rule and relative error
E.g.:
$(3,85)$-rule
Cell X: $25+19+13+8+2=67$
Cell Y: $25+19+12+8+2=66$
X is unsafe:
Y is safe:
Estimating x_{1} :
Estimating y_{1} :
$(25+19+13) / 67=0.851$
$(25+19+12) / 66=0.848$
$67-(19+13)=35=1.4 x_{1}$
$66-(19+12)=35=1.4 y_{1}$

Magnitude tables

(n, k) dominance rule and relative error
E.g.:
$(3,85)$-rule
Cell X: $41+40+40+20+1=142$
Cell Y: $81+20+20+20+1=142$
X is unsafe:
$(41+40+40) / 142=0.852$
Y is unsafe:
$(81+20+20) / 142=0.852$
Estimating x_{1} :
Estimating y_{1} :
$142-(40+40)=62=1.51 x_{1}$
$142-(20+20)=102=1.26 y_{1}$
SDC Tabular data, problems and criteria

Magnitude tables

Relative error
$(2, k)$ rule:

$$
\left(T_{C}-x_{2}\right)-x_{1}<(1-k / 100) T_{C}
$$

$p \%$ rule:

$$
\left(T_{C}-x_{2}\right)-x_{1}<p / 100 x_{1} \longleftarrow \text { More natural }
$$

Magnitude tables

Holdings/branches/offices:
companies contributing to more than one cell

NB: In marginal only one contribution when checking sensitivity!

SDC Tabular data, problems and criteria

Magnitude tables

E.g.: p\% rule with $p=10$

Region					
	A	B	C	D	Total
\ldots					
Violins	620	160	30	0	810
...					
	600,	90,	10,	-	600, 90,
	10,	60,	10,	-	60,
	10	10	10	-	6×10
$((810-90)-600) / 600=20 \% ~=>~ S a f e!~$					

SDC Tabular data, problems and criteria

Magnitude tables

E.g.: $p \%$ rule with $p=10$

Region					
	A	B	C	D	Total
...					
Violins	620	160	30	0	810
...					
	600,	90,	10,	-	690,
	10,	60,	10,	-	60,
	10	10	10	-	6×10
$((810-60)-690) / 690=8.7 \% \text { => Unsafe! }$					

SDC Tabular data, problems and criteria

Survey tables

So far assumed:
population tables (complete enumeration)

Often (weighted) tables based on sample

Response knowledge
Yes: treat similar to complete enumeration

Survey tables

Response knowledge
No:

- relax rules
- use weights to construct 'virtually completely enumerated' cells
E.g., contribution of 100 and weight 5 transforms in 5 virtual contributions of size 100 each
Non-integer weights: several possibilities

Linked tables

Tables sharing cells
Gender \times Municipality and Gender \times Provinces: marginal of first table is interior of second table

Tables that can be considered to be parts of a higher dimensional table

Linked tables

Number of booksellers: Gender \times Region \times Criminal record

		Amsterdam	Rotterdam	Total
	Male	21	12	33
Table 1	Female	16	19	35
	Total	37	31	68
	Criminal record	Yes	No	Total
	Male	23	10	33
Table 2	Female	8	27	35
	Total	31	37	68
	Criminal record	Yes	No	Total
	Amsterdam	11	26	37
Table 3	Rotterdam	20	11	31
	Total	31	37	68

SDC Tabular data, problems and criteria

Linked tables

Number of booksellers: Gender \times Region \times Criminal record
Denote cell values of three dimensional table by $x_{G R C}$ where
G : $\quad M$ (= Male)
F (= Female)
R : $\quad A m$ (= Amsterdam)
Ro (= Rotterdam)
C : $\quad Y$ (= Criminal record Yes)
N (= Criminal record No)

Linked tables

Number of booksellers: Gender \times Region \times Criminal record

Equalities can be derived:

E.g.,		Amsterdam	Rotterdam	Total
	Male	21	12	33
	Female	16	19	35
	Total	37	31	68

\# Male Booksellers in Amsterdam =
\# Male Booksellers in Amsterdam with Criminal Record Yes + \# Male Booksellers in Amsterdam with Criminal Record No
i.e., $\quad 21=x_{M A m Y}+x_{M A m N}$

SDC Tabular data, problems and criteria

Linked tables

Number of booksellers: Gender \times Region \times Criminal record

Equations following from Table 1:

$$
\begin{aligned}
& x_{\text {MATY }}+x_{\text {MATN }}=21 \\
& x_{\text {MROY }}+x_{\text {MRON }}=12 \\
& x_{\text {FATY }}+x_{\text {FATN }}=16 \\
& x_{\text {FROY }}+x_{\text {FRON }}=19
\end{aligned}
$$

Equations following from Table 2:

$$
\begin{aligned}
& x_{\text {MAmY }}+x_{\text {MROY }}=23 \\
& x_{\text {FAmY }}+x_{\text {FRoY }}=8 \\
& x_{\text {MAmN }}+x_{\text {MRoN }}=10 \\
& x_{\text {FAmN }}+x_{\text {FRON }}=27
\end{aligned}
$$

Equations following from Table 3:

$$
\begin{aligned}
& x_{\text {MAmY }}+x_{\text {FAmY }}=11 \\
& x_{\text {MAmN }}+x_{\text {FAmN }}=26 \\
& x_{\text {MRoY }}+x_{\text {FRoY }}=20 \\
& x_{\text {MRoN }}+x_{\text {FRoN }}=11
\end{aligned}
$$

Criminal record	Amsterdam	Rotterdam	Total
Male	11	26	37
Female	20	11	31
Total	31	37	68

SDC Tabular data, problems and criteria

Linked tables

Number of booksellers: Gender \times Region \times Criminal record
Solving these equations with assumptions

$$
\begin{array}{ll}
x_{G R C} & \geq 0 \\
x_{G R C} & \text { integer }
\end{array}
$$

we get		Yes	No	Total
	M, Am	11	10	21
	M, Ro	12	0	12
	M, Total	23	10	33
	F, Am	0	16	16
	F, Ro	8	11	19
	F, Total	8	27	35
	Total	31	37	68

SDC Tabular data, problems and criteria

Hierarchical tables

Hierarchical tables: special case of linked tables

One or more of spanning variable is hierarchic, i.e., its categories contain several (sub)-totals
E.g.: region (nation/state/county/district/municipality) business classification (NACE)

Hierarchical tables

Region	Something sensitive
Groningen	21
Friesland	X
Drenthe	23
Overijssel	27
Gelderland	41
Flevoland	X
Utrecht	32
Noord-Holland	54
Zuid-Holland	67
Zeeland	38
Noord-Brabant	44
Limburg	39
Total	417

SDC Tabular data, problems and criteria

Hierarchical tables

Region	Something sensitive
Groningen	21
Friesland	X
Drenthe	23
Overijssel	27
Gelderland	41
Flevoland	X
Utrecht	32
Noord-Holland	54
Zuid-Holland	67
Zeeland	38
Noord-Brabant	44
Limburg	39
Total	417

SDC Tabular data, problems and criteria

Hierarchical tables

Region	Something sensitive
Groningen	21
Friesland	19
Drenthe	23
Overijssel	27
Gelderland	41
Flevoland	X
Utrecht	32
Noord-Holland	54
Zuid-Holland	67
Zeeland	38
Noord-Brabant	44
Limburg	39
Total	417

SDC Tabular data, problems and criteria

Hierarchical tables

Region	Something sensitive
Groningen	21
Friesland	19
Drenthe	23
Overijssel	27
Gelderland	41
Flevoland	12
Utrecht	32
Noord-Holland	54
Zuid-Holland	67
Zeeland	38
Noord-Brabant	44
Limburg	39
Total	417

SDC Tabular data, problems and criteria

Classifications

Often in practice: many different classifications

SDC-disaster:
non-nested classifications/hierarchies

No (clear) solution!

But: Coordination!

