

Problems and criteria

Contents

- Frequency count tables
 - Stating the problem(s)
 - Sensitive categories
 - Group disclosure
 - Possible Criteria
- Magnitude tables
 - Stating the problem(s)
 - Possible criteria
 - Sensitivity measures
- Survey tables
- Linked tables

Frequency table:

each cell-value T_C represents the number of respondents that fall into that cell

Example: Dutch population, 1/1/2016

	Male	Female	Total
North	856,917	861,473	1,718,390
East	1,782,445	1,801,254	3,583,699
South	1,803,518	1,811,491	3,615,009
West	3,974,255	4,087,767	8,062,022
Total	8,417,135	8,561,985	16,979,120

Cell-value not sensitive

```
Spanning variables:

identifying

(Region, gender, type of business,...)

sensitive

(Sexual behaviour, criminal offence, ...)
```

(Spanning) variables: one sensitive remaining identifying

Example: number of ship-owners

Environmental offence								
Region	Yes	No	Total					
•••								
Α	9	0	9					
•••								

Group disclosure:

All ship-owners in region A committed an environmental offence

Conclusion:

Not all respondents should score on a sensitive category

Note:

Depending on absolute number?

(Info on large group = statistics)

Example, continued

number of ship-owners

	Environmental offence						
Region	Yes	No	Total				
•••							
В	14	2	16				
•••							

Still:

non-offensive ship-owners know quite surely that all other ship-owners in region B committed an environmental offence

Conclusion:

There should not be too many respondents that score on a sensitive category

Possible criterion:

Fraction of respondents that score on a sensitive category should be less than *p*%

to increase the uncertainty

E.g.,
$$p = 40$$

Example, continued

number of ship-owners

Environmental offence							
Region	Yes	No	Total				
•••							
С	1	1	2				
•••							

Still:

Non-offensive ship-owner knows that the other one committed an environmental offence

Possible criterion:

If respondents score on a sensitive category, at least *n* respondents should score on *non*-sensitive categories

Example, continued

Non-offenders now do not know which other ship-owner committed the offence

number of ship-owners

	Environmental offence							
Region	Yes	No	Total					
•••								
D	1	9	10					

'Summary':

scores should be sufficiently spread over all categories

Cells with only one or two, not necessarily unsafe!

Causes of death						
Region	а	b	С	d	е	Total
•••						
F	1	3	1	2	3	10
•••						

Magnitude table:

each cell-value T_C represents the sum of the score of the respondents that fall into that cell

Magnitude tables (example)

Turnover (10⁶ €) of instrument producing companies

Region number of respondents										
	Α		В		С		D		Total	
Harps	58	151	47	2	36	98	89	23	230	274
Organs	71	16	124	21	24	9	31	8	250	54
Pianos	92	5	157	12	59	7	28	1	336	25
Other	800	302	934	362	651	287	742	227	3127	1178
Total	1021	474	1262	397	770	401	890	259	3943	1531

Law / agreement:

No 'sensitive' information on single respondents should be published

Problem:

Cell consisting of one contribution

Piano-producing company in region D

How about the two harp-producing companies in region B?

Region							
	Α	В	С	D	Total		
Harps	58	47	36	89	230		
Organs	71	124	24	31	250		
Pianos	92	157	59	28	336		
Other	800	934	651	742	3127		
Total	1021	1262	770	890	3943		

How about the two harp-producing companies in region B?

If they know they are the only two, they can disclose each others contribution!

How about the five piano-producing companies in region A?

Region								
	Α	В	С	D	Total			
Harps	58	47	36	89	230			
Organs	71	124	24	31	250			
Pianos	92	157	59	28	336			
Other	800	934	651	742	3127			
Total	1021	1262	770	890	3943			

How about the five piano-producing companies in region A?

Suppose:

Company X: 81,000,000 €

Company Y: 5,000,000 €

Other three: 2,000,000 € each

Total: 92,000,000 €

92 - 5 = 87 mln € is within 7.4%!

Sensitive cells:

one contribution

two contributions

one or more dominating contributions

Need:

Sensitivity measure

Examples of sensitivity measures:

- minimum number rule (threshold rule)
- (*n*,*k*) dominance rule ← Concentration
- p%-rule

 / rules
- p/q-rule (prior-posterior rule)

Threshold rule

A cell *C* is unsafe if its value consists of less than *k* contributions

E.g., with *k*= 3:

piano-producing companies in regions B and C

Concentration rules only make sense if the size of the variable is 'identifying'!

I.e., if 'intruders' know who the largest respondents are.

Example:

Turnover 600

(n,k) dominance rule

A cell is unsafe, if the largest *n* contributions in that cell amount to more than *k* % of the cell-total:

$$\sum_{i=1}^{n} x_{i} > \frac{k}{100} \sum_{i=1}^{N(C)} x_{i}$$

Interpretations:

- the largest n companies dominate the cell-total too much
- the (n-1) coalition of x_2, \ldots, x_n is able to estimate x_1 too accurately

(n,k) dominance rule

(n,k)-dominance rule implies

at least
$$\left\lceil \frac{100n}{k} \right\rceil$$
 contributions

Follows from case where all contributions same size

E.g., (3,70)-rule implies at least 5 contributions

3 equal contributions: top 3 100%

4 equal contributions: top 3 75%

5 equal contributions: top 3 60%

(n,k) dominance rule

How about the five piano-producing companies in region A, using a (2,85) dominance rule?

Suppose:

Company X: 81,000,000 €

Company Y: 5,000,000 €

Other three: 2,000,000 € each

Total: 92,000,000 €

Unsafe: (81 + 5)/92 = 0.93 > 0.85

p%-rule

A cell is unsafe if some respondent to that cell can estimate another respondent to that cell within p% of its true value

Straightforward interpretation:

contributions should not be estimated too accurately

p%-rule

How will a contributor estimate another?

Second largest, x_2 , will try to estimate the largest, x_1 , by $T_C - x_2$

I.e., the cell is unsafe if

$$(T_C - x_2) - x_1 \le \frac{p}{100} x_1$$

p%-rule

How about the five piano-producing companies in region A, using a 10%-rule?

Suppose:

Company X: 81,000,000 €

Company Y: 5,000,000 €

Other three: 2,000,000 € each

Total: 92,000,000 €

Unsafe: ((92 - 5) - 81)/81 = 0.074 < 0.10

Magnitude tables p/q-rule

A cell is unsafe if some respondent in the cell (knowing all other contributions up to q%) can estimate another respondent to that cell within p% of its true value

Used to model a-priori knowledge about other contributions (can be used to obtain even more accurate estimates)

- dominance rule
- *p*%-rule
- p/q-rule

are examples of so called linear sensitivity measures

Linear sensitivity measures:

$$S(C) = \sum_{i=1}^{N(C)} \lambda_i x_i$$

with N(C) the number of contributions to cell C, λ_i a set of constants

and $x_1 \ge x_2 \ge ... \ge x_{N(C)}$ (≥ 0) the decreasingly ordered contributions

Choose λ_i such that cell C is unsafe if S(C) > 0

Often additionally sub-additivity is assumed:

$$S(X + Y) \leq S(X) + S(Y)$$

i.e.,

by combining two cells, the sensitivity will always be smaller or equal to the sum of the individual sensitivities

N.B.: if and only if λ_i are non-increasing

(n,k) dominance rule

Dominance rule

$$S_D(C) = \left(1 - \frac{k}{100}\right) \sum_{i=1}^n x_i - \frac{k}{100} \sum_{i=n+1}^{N_C} x_i$$

SO

$$\lambda_i = \begin{cases} 1 - \frac{k}{100} & i = 1, ..., n \\ -\frac{k}{100} & i = n + 1, ..., N_C \end{cases}$$

- Sub-additive
- $x_i \ge 0$ needed to make sense

p%-rule

p%-rule

$$S_p(C) = \frac{p}{100} x_1 - \sum_{i=3}^{N_C} x_i$$

SO

$$\lambda_i = \left\{ egin{array}{ll} rac{p}{100} & i = 1 \\ & & & \\ 0 & i = 2 \\ -1 & i = 3, \dots, N_C \end{array}
ight.$$

- Sub-additive
- $x_i \ge 0$ needed to make sense

p%-rule

Note:

extendable to *n*-coalitions:

$$S_p(C) = \frac{p}{100} x_1 - \sum_{i=n+2}^{N_C} x_i$$

(n = 1 is 'old' p%-rule)

Both p% and p/q rule are easily extended to situation with authorisations (waivers)

(cell unsafe due to company that allows its contribution to be released)

(n,k) dominance rule not!

Reason: interpretation in terms of relative error

(n,k) dominance rule and relative error

E.g.:

(3,85)-rule

Cell X: 25 + 19 + 13 + 8 + 2 = 67

Cell Y: 25 + 19 + 12 + 8 + 2 = 66

X is unsafe: (25+19+13)/67 = 0.851

Y is safe: (25+19+12)/66 = 0.848

Estimating x_1 : 67 - (19+13) = 35 = 1.4 x_1

Estimating y_1 : 66 - (19+12) = 35 = 1.4 y_1

(n,k) dominance rule and relative error

E.g.:

(3,85)-rule

Cell X: 41 + 40 + 40 + 20 + 1 = 142

Cell Y: 81 + 20 + 20 + 20 + 1 = 142

X is unsafe: (41+40+40)/142 = 0.852

Y is unsafe: (81+20+20)/142 = 0.852

Estimating x_1 : 142 - (40+40) = 62 = 1.51 x_1

Estimating y_1 : $142 - (20+20) = 102 = 1.26 y_1$

Relative error

(2, k) rule:

$$(T_C - x_2) - x_1 < (1 - k/100) T_C$$

p% rule:

Holdings/branches/offices: companies contributing to more than one cell

NB: In marginal only *one* contribution when checking sensitivity!

E.g.: p% rule with p = 10

		F	Region			
	Α	В	С	D	Total	
Violins	620	160	30	0	810	
	600,	90,	10,	-	600, 90,	
	10,	60,	10,	-	60,	
	10	10	10	-	6 x 10	
((810 - 90) - 600)/600 = 20% = Safe!						

E.g.: p% rule with p = 10

		F	Region			
	Α	В	С	D	Total	
Violins	620	160	30	0	810	
	<i>600,</i>	90,	10,	-	<i>690</i> ,	
	10,	60,	10,	-	60,	
	10	10	10	-	6 x 10	
((810 - 90) - 600)/600 = 20% => Safe!						

((810 - 60) - 690)/690 = 8.7% =Unsafe!

Survey tables

So far assumed:

population tables (complete enumeration)

Often (weighted) tables based on sample

Response knowledge

Yes: treat similar to complete enumeration

Survey tables

Response knowledge

No:

- relax rules
- use weights to construct 'virtually completely enumerated' cells
- E.g., contribution of 100 and weight 5 transforms in 5 virtual contributions of size 100 each

Non-integer weights: several possibilities

Tables sharing cells

Gender × Municipality and Gender × Provinces: marginal of first table is interior of second table

Tables that can be considered to be parts of a higher dimensional table

Number of booksellers: Gender \times Region \times Criminal record

		Amsterdam	Rotterdam	Total
	Male	21	12	33
Table 1	Female	16	19	35
	Total	37	31	68
	Criminal record	Yes	No	Total
	Male	23	10	33
Table 2	Female	8	27	35
	Total	31	37	68
	Criminal record	Yes	No	Total
Table 3	Amsterdam	11	26	37
	Rotterdam	20	11	31
	Total	31	37	68

Number of booksellers: Gender × Region × Criminal record

Denote cell values of three dimensional table by x_{GRC} where

```
G: M (= Male)
F (= Female)
```

Number of booksellers: Gender × Region × Criminal record

Equalities can be derived:

E.g.,

	Amsterdam	Rotterdam	Total
Male	21	12	33
Female	16	19	35
Total	37	31	68

Male Booksellers in Amsterdam =

Male Booksellers in Amsterdam with Criminal Record Yes +

Male Booksellers in Amsterdam with Criminal Record No

i.e.,
$$21 = x_{MAmY} + x_{MAmN}$$

Number of booksellers: Gender \times Region \times Criminal record

Equations following from Table 1:

X_{MAmY}	+	X_{MAmN}	=	21
X _{MRoY}	+	X _{MRoN}	=	12
X FAmY	+	X FAmN	=	16
X FRoY	+	X _{FRoN}	=	19

	Amsterdam	Rotterdam	Total
Male	21	12	33
Female	16	19	35
Total	37	31	68

Equations following from Table 2:

$$X_{MAmY}$$
 + X_{MRoY} = 23
 X_{FAmY} + X_{FRoY} = 8
 X_{MAmN} + X_{MRoN} = 10
 X_{FAmN} + X_{FRoN} = 27

Criminal record	Yes	No	Total
Male	23	10	33
Female	8	27	35
Total	31	37	68

Equations following from Table 3:

$$X_{MAmY}$$
 + X_{FAmY} = 11
 X_{MAmN} + X_{FAmN} = 26
 X_{MRoY} + X_{FRoY} = 20
 X_{MRoN} + X_{FRoN} = 11

Criminal record	Amsterdam	Rotterdam	Total
Male	11	26	37
Female	20	11	31
Total	31	37	68

Number of booksellers: Gender \times Region \times Criminal record

Solving these equations with assumptions

 $x_{GRC} \geq 0$

 x_{GRC} integer

we get

	Yes	No	Total
M, Am	11	10	21
M, Ro	12	0	12
M, Total	23	10	33
F, Am	0	16	16
F, Ro	8	11	19
F, Total	8	27	35
Total	31	37	68

Hierarchical tables: special case of linked tables

One or more of spanning variable is hierarchic, i.e., its categories contain several (sub)-totals

E.g.: region (nation/state/county/district/municipality) business classification (NACE)

Region	Something sensitive
Groningen	21
Friesland	X
Drenthe	23
Overijssel	27
Gelderland	41
Flevoland	X
Utrecht	32
Noord-Holland	54
Zuid-Holland	67
Zeeland	38
Noord-Brabant	44
Limburg	39
Total	417

Region	Something sensitive
North	63
East	80
South	83
West	191
Total	417

Region	Something sensitive
Groningen	21
Friesland	X
Drenthe	23
Overijssel	27
Gelderland	41
Flevoland	X
Utrecht	32
Noord-Holland	54
Zuid-Holland	67
Zeeland	38
Noord-Brabant	44
Limburg	39
Total	417

Region	Something sensitive
North	63
East	80
South	83
West	191
Total	417

Region	Something sensitive
Groningen	21
Friesland	19
Drenthe	23
Overijssel	27
Gelderland	41
Flevoland	X
Utrecht	32
Noord-Holland	54
Zuid-Holland	67
Zeeland	38
Noord-Brabant	44
Limburg	39
Total	417

Region	Something sensitive
North	63
East	80
South	83
West	191
Total	417

Region	Something sensitive
Groningen	21
Friesland	19
Drenthe	23
Overijssel	27
Gelderland	41
Flevoland	12
Utrecht	32
Noord-Holland	54
Zuid-Holland	67
Zeeland	38
Noord-Brabant	44
Limburg	39
Total	417

Region	Something sensitive
North	63
East	80
South	83
West	191
Total	417

Classifications

Often in practice: many different classifications

SDC-disaster:

non-nested classifications/hierarchies

No (clear) solution!

But: Coordination!