Dealing with non-response: Introduction to imputation

Aksel Thomsen \& Peter Tibert Stoltze

Statistics Denmark

Dealing with non-response: Overview

- Defining non-response
- Assessment of non-response
- The problem with non-response
- Imputation as a way to deal with non-response
- Types of imputation
- Added uncertainty by applying imputation

A simple question ©

- We have a sample of three units with observed values

$$
y=\{1,2,6\}
$$

-What is the sample mean?
-What if one of the values were missing?

$$
y=\{1,2, \mathrm{NA}\}
$$

Definition of non-response

- Item non-response
- Subject A has not responded to the survey
- Partial non-response
- Subject B has responded to questions 1, 2, and 4 but not 3 and 5
- Central and non-central variables in a multivariate survey
- All questions are important, but some are more important than other
- When does partial non-response become item non-response?
- Perhaps the central questions are 1 and 2 and we are relatively happy - but it could also be that the real core information is question 3 ?

Assessment of non-response

- When given a data set from a survey, we need to have good understanding of routing
- If subject answers XXX to question A , skip question B , and go directly to question C
- We also need to know how to interpret values in the data file, i.e. what value represents a missing value
- We have seen many data files coded with either . or NA or even -9999
- Assume a data file containing the results of a questionnaire with p questions (partially) answered by n subjects
- The data are organized in a $n \times p$ data frame*

$$
Y=\left[\begin{array}{ccc}
Y_{11} & \cdots & Y_{1 p} \\
\vdots & \ddots & \vdots \\
Y_{n 1} & \cdots & Y_{n p}
\end{array}\right]
$$

- This means that the answer from subject i to question j is $Y_{i j}$
- We call this a data frame because the columns need not be of the same type - if all columns are numeric we have a matrix
- We now define a matrix R of same dimensions as Y to indicate nonresponse:

$$
R_{i j}=\left\{\begin{array}{cc}
1 & \text { if } Y_{i j} \in V_{j} \\
0 & \text { else }
\end{array}\right.
$$

- Here we define the case of response to mean that a specific answer $X_{i j}$ belongs to the V_{j} (the set of admissible values for question j)
- Hence, the matrix R becomes filled with 0's and 1's allowing us to start assessing the amount of non-response
- Note: This seems like a simple task, but it is not

Non-response in a sampling perspective

- When we do probabilistic sampling, we try to describe a population with N units through a sample with n units
- The mechanism leading from N to n is the sampling design, and we know the inclusion probability π
- For simple random sampling we have

$$
\pi=\frac{n}{N}
$$

leading to the design weight

$$
w=\frac{1}{\pi}=\frac{N}{n}
$$

- With non-response we move from n sampled units to m responding units
- If the mechanism from sample to response is truly random, then we can estimate the response propensity as

$$
\theta=\frac{m}{n}
$$

- The combined probability of both being sampled and responding (assuming these are actually independent) is simply

$$
p=\pi \theta=\frac{n}{N} \frac{m}{n}=\frac{m}{N}
$$

Why is non-response a potential problem?

- However, θ is almost never a constant value, since response propensity almost always varies with our variables of interest
- In the 1970's Rubin suggested a more formal approach to this distinguishing between
- Missing complete at random (MCAR) where in fact θ is the same for all cases
- Missing (conditionally) at random (MAR) where θ can be constant within groups of observed data
- Missing not at random (MNAR) where θ is individual
- Simple methods like Mean Imputation only works for MCAR, and they will give biased results for MAR and MNAR

Dealing with partial non-response

- Simplest solution: Dismiss all rows with partial non-response, i.e. reduce data set to complete cases
- Simple but can potentially mean that too much information is lost
- A better solution is often to apply imputation to suitable variables
- Probably not all variables should be subject to imputation

Dealing with item non-response

- If a subject has not answered at all, we will only in rare circumstances do imputation
- Weighting is normally the best solution when no individual response is particularly important
- In the case of business statistics and large enterprises, it can make sense to do imputation
- In this case we will resort to "expert imputation" which is a very manually driven process based on a combination of whatever knowledge is available this process should only be applied to very few cases!

Types of imputation

- Donor based or model based
- Duplicate values from a neighbor or construct from statistical/ML model
- Stochastic or deterministic
- Get exact same result each time or introduce a bit of variation
- Hot-deck or cold-deck
- Using information from current round of survey or from previous ones

Examples of imputation methods

- Mean imputation
- Last Value Carried Forward
- Multiple Linear regression
- Multinomial logistic regression
- Random forest

The idea of multiple imputation

- When imputing we add a new source of uncertainty
- If we have used a stochastic method, we can make several versions of imputed data sets and measure the variation between these

Evaluating deterministic imputation

- If we have used a deterministic method it is possible to apply resampling techniques to evaluate the result
- Jackknife: Basically leave out items one-by-one and evaluate
- Bootstrap: Sampling with replacement from the incomplete data

Resources

- The standard text is Donald Rubin and Roderick Little: "Statistical Analysis with Missing Data" (3 ${ }^{\text {rd }}$ edition, Wiley 2019)
- Freely available is "Flexible Imputation of Missing Data" by Stef van Buuren (also available as hardcopy at Chapman \& Hall)
- https://stefvanbuuren.name/fimd/

