Introduction to Seasonal adjustment
Decomposition of a time series

• What is seasonality?
• Unobserved components
• Additive or multiplicative model
What is seasonality

- No 100% definition!
- Fluctuations repeating themselves (more or less precisely) from year to year
- Intuitively, seasonality should sum to zero within a year (for an additive decomposition)
Simulated time series with seasonality

Additive model \[X = T + 50 \times S \]

Multiplicative model \[X = T \times S \]
Model for unobservable components

- Additive model
 \[O_t = T_t + S_t + I_t = A_t + S_t \]
- Multiplicative model
 \[O_t = T_t \cdot S_t \cdot I_t = A_t \cdot S_t \]

Where \(O \) is the pre-adjusted series,
\(t \) is the time,
\(T \) is the trend-cycle,
\(S \) is the seasonal component,
\(I \) is the irregular component (white noise), and
\(A \) is the seasonally adjusted series.

No unique decomposition without conditioning!
Methods and software

• X-12-ARIMA
 – Relatively few assumptions
 – Non-parametric approach

• TRAMO/SEATS
 – Uses a mathematical model with many assumptions
 – Parametric approach
Demetra

• Developed by (not at) Eurostat

• Graphical interface for X-12-ARIMA and TRAMO/SEATS

• Currently under development – will feature functions for documenting seasonal adjustment
Pre-adjustment

Calendar effects and outliers
The flow in seasonal adjustment

1. Transformation (possibly)
 • To ensure stationarity (poss. log.transformation)

2. Pre-adjustment
 • Prepare for estimation of the season

3. ARIMA model
 • Find the model with the best description of the pre-adjusted time series

4. Forecast the series
 • Forecast with the ARIMA model

5. Decomposition
 • Split up in Trend, Season and Irregular component
Notation

Two possible models

• Additive: $O_t = T_t + S_t + I_t = A_t + S_t$
• Multiplikative (log.transformed):
 $$O_t = T_t \cdot S_t \cdot I_t = A_t \cdot S_t$$

where

O_t – the pre-adjusted time series
T_t – the trend
S_t – the seasonal component
I_t – the irregular component
A_t – the seasonal adjusted series
Regression

Normal regression $X_t = \beta Z_t + O_t$

- X_t the original series
- Z_t explanatory variable (one or more)
- β regression coefficient (one or more)
- O_t residuals (residual variation)
Pre-adjustment

\[X_t = \beta_1 Z_{1t} + \ldots + \beta_k Z_{kt} + O_t \]

where
- \(X_t \) – the original series
- \(Z_{it} \) – explicatory variables
- \(\beta_i \) – regression coefficients
- \(O_t \) – the preadjusted series (follows an ARIMA model)
Explicatory variables - Calendar

- Months/Quarters are not comparable
 - The length of the month differs
 - The more working days the higher production
 - Leap year
 - Type of the day differs
 - Sundays/Holy days versus normal trading days
 - Trade is bigger Saturday than Monday
 - Holydays can move (moving seasonality)
 - Easter

- Countries are not comparable
 - Easter in western and eastern Catholic church
 - Ramadan
 - Comparability in the EU (Eurostat)
Explicatory variables – External reasons

- Changes caused by external reasons:
 - Outliers (extreme/not typical observations)
 - Reduced sale of ice cream in a cold summer
 - Strike
 - Freezing days (construction business)
 - Level shift (permanent change)
 - Changes in duties and taxes e.g. on cars
 - Financial crisis
 - Transitory changes (temporary/provisional)
 - Felling of timber after a storm
 - Rise in price on e.g. coffee
Two types of Pre-adjustments:

• **Temporary** corrections
 - Additive outliers (AO)
 - Level shift (LS)
 - Transitory change (TC)
 - Ramp
 - User Defined

• **Permanent** corrections
 - Trading days
 - Easter
 - National Holy days
 - Leap Year
 - User Defined

External reasons:

Calendar effects:
Types of Pre-adjustment - 2

Difference between permanent and temporary corrections

After the decomposition

• temporary corrections will be taken back in the seasonal adjusted series (Level shifts e.g.)
 – These things have happened in the real world

• permanent corrections will not be taken back in the seasonal adjusted series
 – The purpose is to compare months/quarters (standard months, standard quarters)
Explicatory variables

- **Temporary corrections**

 - Additive outlier (AO)
 - Level shift (LS)
 - Transitory change (TC)
 - Ramp
Explicatory variables

• Permanent corrections

- The Production in February is on average 28.25 days.
- In normal years the Production will be increased from 28 days to 28.25 days.
- In Leap years the Production will be reduced from 29 days to 28.25 days.
Explicatory variables

• Permanent corrections
 – Trading Days:
 • Z_t is the number of trading days in each month
 e.g. $Z_t = (20,23,21,22,22,21,23,...)$
 • $Z_{1t} ... Z_{7t}$ is the number of Mondays ... Sundays
 e.g. $Z_{1t} = (4,4,5,4,4,5,4,5,4,...)$
 • All months are changed to include the same amount of trading days or days of each type (standard month).
Pre-adjustment in Demetra

• Automatic outlier/calendar correction:
 – LS/AO/TC, Easter, Leap year/ Trading days (7,6,2,1 regressors) via regression
 – Pre test for significance (t-test)
 – Effect included if significant
X-11

An algorithm for decomposition
n x m-terms moving average

- An **n x m moving average** is an m-term simple average taken over n consecutive sequential spans.

\[
\overline{X}_{3 \times 3} = \frac{1}{3} \left(\frac{X_{t-2} + X_{t-1} + X_t}{3} + \frac{X_{t-1} + X_t + X_{t+1}}{3} + \frac{X_t + X_{t+1} + X_{t+2}}{3} \right)
\]

\[
= \frac{1}{9} X_{t-2} + \frac{2}{9} X_{t-1} + \frac{3}{9} X_t + \frac{2}{9} X_{t+1} + \frac{1}{9} X_{t+2}
\]
Filters in X-11

• Estimation of trend-cycle from raw series: 2×12 (monthly figures) or 2×4 (quarterly figures)

• Estimation of seasonal component from detrended series (SI-ratio): $3 \times 3S$, $3 \times 5S$ or $3 \times 9S$ (only monthly series)
The X-11 algorithm

• Linear filters during three steps
 – Step 1: Initial estimates
 – Step 2: Final seasonal component
 – Step 3: Final trend and irregular component

• Let O_t be the pre-adjusted series and assume an additive decomposition model:
 \[O_t = T_t + S_t + I_t = A_t + S_t \]

• The following slides show the decomposition of a monthly series…
X-11: Step 1 (1 of 3)

(i) Calculating initial trend estimate using 2×12 moving average:

\[
T_t^{(1)} = \frac{1}{24} O_{t-6} + \frac{1}{12} O_{t-5} + \cdots + \frac{1}{12} O_t + \cdots + \frac{1}{12} O_{t+5} + \frac{1}{24} O_{t+6}
\]

(ii) Calculating initial SI-ratio:

\[
(S_t + I_t)^{(1)} = SI_t^{(1)} = O_t - T_t^{(1)}
\]
(iii) Calculating initial seasonal component using 3×3 seasonal average:

$$\tilde{S}_t^{(1)} = \frac{1}{9} S_I^{(1)}_{t-24} + \frac{2}{9} S_I^{(1)}_{t-12} + \frac{3}{9} S_I^{(1)}_t + \frac{2}{9} S_I^{(1)}_{t+12} + \frac{1}{9} S_I^{(1)}_{t+24}$$

followed by normalization:

$$S_t^{(1)} = \tilde{S}_t^{(1)} - \left(\frac{1}{24} \tilde{S}^{(1)}_{t-6} + \frac{1}{12} \tilde{S}^{(1)}_{t-5} + \cdots + \frac{1}{12} \tilde{S}^{(1)}_{t-5} + \frac{1}{24} \tilde{S}^{(1)}_{t+6} \right)$$
(iv) Calculating preliminary seasonally adjusted series:

\[A_t^{(1)} = O_t - S_t^{(1)} \]

• Choice of filters used during Step 1 does not depend on the series – they are fixed.
(iv) Calculating preliminary seasonally adjusted series:

\[A_t^{(1)} = O_t - S_t^{(1)} \]

- Choice of filters used during Step 1 does not depend on the series – they are fixed.
X-11: Step 2 (1 of 3)

(i) Calculate intermediary trend using something called a Henderson filter. A different type of moving average, which empirically has proven useful.

(ii) Calculate SI-ratio:

\[(S_t + I_t)^{(2)} = SI_t^{(2)} = O_t - T_t^{(2)}\]
X-11: Step 2 (2 of 3)

(iii) Calculating seasonal factor using seasonal average (typically 3x5):

\[
\tilde{S}_t^{(2)} = \frac{1}{15} S_{t-36}^{(2)} + \frac{2}{15} S_{t-24}^{(2)} + \frac{3}{15} S_{t-12}^{(2)} \\
+ \frac{3}{15} S_{t}^{(2)} + \frac{3}{15} S_{t+12}^{(2)} + \frac{2}{15} S_{t+24}^{(2)} + \frac{1}{15} S_{t+36}^{(2)}
\]

followed by normalization:

\[
S_t^{(2)} = \tilde{S}_t^{(2)} - \left(\frac{1}{24} \tilde{S}_{t-6}^{(2)} + \frac{1}{12} \tilde{S}_{t-5}^{(2)} + \cdots + \frac{1}{12} \tilde{S}_{t-5}^{(2)} + \frac{1}{24} \tilde{S}_{t+6}^{(2)} \right)
\]
X-11: Step 2 (3 of 3)

Seasonal filter is either $3 \times 3S$, $3 \times 5S$ or $3 \times 9S$ depending on changes in S_t relative to I_t. The shorter filters are preferred if the seasonal component changes a lot compared to the irregular component.

(iv) Calculating the final seasonally adjusted series (of the B iteration):

$$A_t^{(2)} = O_t - S_t^{(2)}$$
X-11: Step 3 (1 of 1)

(i) Calculating final trend using again a Henderson filter

\[T_t^{(3)} = \sum_{i=-H}^{H} h_i A_{t+i}^{(2)} \]

(ii) Calculating final irregular component:

\[I_t^{(3)} = A_t^{(2)} - T_t^{(3)} \]

such that the final decomposition is

\[\tilde{O}_t = T_t^{(3)} + S_t^{(2)} + I_t^{(3)} \]
Iterative use of the basic X-11 algorithm

- The X-11 algorithm is used 3 times to identify extreme values for temporary linearization of the series:
 - The B iteration finds preliminary extreme values
 - The C iteration finds final extreme values
 - The D iteration is the actual seasonal adjustment
- Extreme values of SI_t are replaced
- Therefore $\widetilde{O}_t = T_t^{(3)} + S_t^{(2)} + I_t^{(3)} \neq O_t$
- \widetilde{O}_t from the B iteration is the starting point for the C iteration, and \widetilde{O}_t from the C iteration is the starting point for the D iteration.