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Abstract

By means of so-called virtual or shadow prices, short-run factor demand functions,
short run marginal costs etc. can be derived directly from any long-run cost
function. The usual approach (using short-run/restricted/conditional cost functions)
is criticized, and some easy approximation formulas are provided. Technical
progress, scale effects etc. can be easily added to any cost function by means of
factor augmenting efficiency indexes, and it is shown that the trend- and scale
parameters of the usual long-run translog cost function are mathematically
equivalent to parameters of such efficiency indexes. The techniques are illustrated
on the well-known Berndt-Wood data set, using a long-run generalized Leontief
(GL) cost function, and assuming capital and labour quasi-fixed.
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1. Introduction

Short-run factor demand functions are very often derived directly (Shephard’s
Lemma) from a postulatedshort-run cost function(also known as a restricted/-
conditional/variable cost function), where the levels of the fixed (or "quasi-fixed")
factors appear as independent variables. However, using a short-run cost function
as a starting point entails a lot of unpleasant problems, because it is usually very
hard to translate relevant economic properties of the underlying production function
into corresponding properties of the short-run cost function, especially when
operating with more than one quasi-fixed factor. As an example, one might want
the underlying production function to be quasi-concave, homothetic, separable,
symmetric in the factors or to contain certain kinds of technical progress, and this
can be extremely hard and tiresome to translate into properties of the corresponding
short-run cost function. In addition to that, short-run cost functions have a tendency
to imply unreasonable isoquants of the underlying production function, as shown
in section 4 below.

To avoid this problem, one might alternatively base one’s empirical work on a
postulated long-run cost function, since there are generally quite easy and
straightforward correspondences between properties of the underlying production
function and properties of the long-run cost function. Long-run factor demands can
be derived directly (Shephard’s Lemma) from the long-run cost function, so the
great question − and the great question of this paper − is how to get from these
concepts to the correspondingshort-run concepts, where the levels of the quasi-
fixed factors appear as independent variables? How does one get from a long-run
cost function to its corresponding short-run counterpart, when the underlying
production function is not known? Or equivalently: how does one get from a system
of long-run factor demand functions to the corresponding system of short-run factor
demand functions?

Fortunately, this question is easy to answer, as there exists a very useful − but often
overlooked −direct link between any long-run factor demand system and its
corresponding short-run factor demand system, making use of so-called shadow or
virtual prices of the quasi-fixed factors (see e.g. Rothbart (1941), Neary/Roberts
(1980), Squires (1994)). This technique is easy: one simply solves the long run
demand functions for the quasi-fixed factors with respect to their own factor prices
and inserts the resulting shadow or virtual prices into the long run demand functions
for the remaining (flexible/variable) factors. The result of this is the corresponding
system of short-run factor demand functions.

Using this technique, one can form theoretically consistent short- and long-run
factor demand functions in three easy steps: (a) postulate a long-run cost function
(with the desired theoretical properties imposed), (b) derive the corresponding long-
run factor demands using Shephard’s Lemma, and finally (c) derive the correspon-
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ding short-run factor demands from the long-run factor demands by the above-
mentioned shadow price method. From this, short-run costs follow directly, and
short-run marginal costs can be obtained from long-run marginal costs in an equally
simple way.

Thus, the above shadow price link between short- and long-run factor demand
makes it possible to go from a long-run cost function to all necessary short-run
concepts in an easy and very transparent way. But as this approach does not seem
to be widely utilized, there has been an evolution of a large number of different
short-run cost functions (for recent examples, see e.g. the short-run translog of
Berndt/Friedlaender/Chiang/Vellturo (1993) or the short-run generalized Leontief
(GL) of Park/Kwon (1995)). These functions usually resemble − but are in reality
very different from − well-known cost functions such as the (original) long-run
translog or generalized Leontief cost functions. As mentioned above, it is not
exactly easy to impose theoretical restrictions on a short-run cost function, and in
addition to that, the proposed alternative shadow price approach − holding on to
well-known and well-examined long-run cost functions − is much more simple and
straightforward, both as to the mathematical derivations and as to the conceptual
clarity.

As regards technical progress, scale effects etc., it is shown how to introduce these
effects in a very easy and easily interpretable way, making use of so-called (factor
augmenting)efficiency indexes. Using this idea, one can start out with a "raw" no
technical progress/constant returns to scale long-run cost function, and add technical
progress, scale effects etc. via these efficiency indexes. Most interestingly, it can
be shown that all the trend- and scale parameters of the usual translog cost function
can be exactly translated into corresponding efficiency parameters, yielding a
completely new way of interpreting the trend- and scale parameters of the translog
cost function.

In section 2 below, the two above-mentioned cost function approaches are
contrasted. In section 2A, the usualshort-run cost functionapproach is examined,
whereas the proposed alternative shadow price approach is presented in section 2B,
using a long-run cost functionas the starting point instead. The two different
approaches are illustrated using the generalized Leontief cost function in a short-
and long-run version. In section 3, the results of section 2 are summarized, and the
shadow price approach is sketched in the generaln-factor case. In section 4, the
theoretical problems with the usual short-run cost function approach are demonstra-
ted, since the isoquants of the underlying production function often turn out to have
a very unattractive shape. In section 5 it is shown in then-factor case how to form
all relevant short-run concepts from the original long-run generalized Leontief cost
function, generalizing the results of section 2B. In section 6, the above-mentioned
efficiency index methodology is presented, and in section 7, some very useful
general approximations between short- and long-run factor demand are provided.
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In section 8, a simple empirical application on the well-known Berndt-Wood data
set is briefly presented, and in section 9, the paper is concluded.

2. Two different approaches to short- and long-run factor
demand

As mentioned in the introduction, the main point of this paper is that it is possible
to form short-run factor demands (and costs and marginal costs) directly from a
long-run cost function. This entails many advantages, since the global properties of
the most popular (flexible) long-run cost functions such as e.g. the translog and the
generalized Leontief have been analyzed in great depth in numerous papers (see e.g.
Caves/Christensen (1980), Barnett/Lee (1985), Despotakis (1986), Diewert/Wales
(1987)). This is in sharp contrast to the absence of similar studies of short-run cost
functions, despite the fact that the latter have been used repeatedly in the literature.

In the following two sections (2A and 2B), the above claims are illustrated using
a particular cost function − the so-called generalized Leontief (see Diewert (1971))
− in a short- and long-run version. And to keep matters as simple as possible − but
still being able to focus on the main point of this paper − it is assumed that there
is only three production factors (one quasi-fixed, and two flexible), no technical
progress and constant returns to scale. In section 2A below, the conventional short-
run cost function approach is examined following the usual procedure closely, and
making no use of the shadow price results presented in section 2B.

2A. The usual short-run cost function approach

The short-run cost function approach was initiated by Brown and Christensen
(1981), and has been used innumerable times since then. For a recent use of a
short-run translog cost function, see e.g. Berndt/Friedlaender/Chiang/Vellturo
(1993), and for a recent use of a short-run generalized Leontief cost function, see
e.g. Park/Kwon (1995), building on Morrison (1988). This particular short-run
version of the generalized Leontief − being perfectly representative of short-run cost
functions in general, including the short-run translog − is presented below.
Subsequently, this function is denoted the "short-run Morrison generalized Leontief
cost function", and with three production factors (one quasi-fixed and two flexible),
no technical progress and constant returns to scale, total short-run costs,C, are
given as:3

3The generalization of the original GL function to contain among other things the quasi-fixed
factors is not very unequivocal, since the way the quasi-fixed factors are added to the GL function
differs among writers on the subject. The Morrison approach, however, is fully capable of illuminating
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(1)

where i, j = L, E and αLE = αEL. The variablesK, L and E, denote fixed capital,
labour and energy,PK, PL andPE, are the corresponding factor prices, andY is the
production level. The function is homogenous of degree one in the factor prices,
and it is seen that there is constant returns to scale, sinceC increases with 1%, if
Y andK are both increased by 1%. The first term of (1) is simply the fixed costs
of K, whereas the second term is a generalized Leontief form in the prices of the
two flexible factors (L andE). The last two terms express how the variable costs
are affected byK, and the concrete mathematical form contains 6 parameters
necessary for flexibility (cf. Lau (1974) regarding the definition of flexibility), but
is otherwise quite arbitrary. Differentiating (1) with respect toPL and PE

(Shephard’s Lemma) yields the short-run factor demands:

(2)

(3)

whereas the short-run marginal costs,MC ≡ ∂C/∂Y, are obtained by differentiating
C with respect toY:

(4)

At this point, the users of the short-run cost function approach usually define a so-
called shadow price ofK, P̃K, denoting by how much the short-run variable costs

the main points. The function is taken from Morrison (1988), equation (1), withδim = γmn = γmk = 0
(or Park/Kwon (1995) equation (12) with the same restrictions). Please note that I have added the
fixed costs,PKK, on the right hand side, so that (1) is the short runtotal costs, whereas the Morrison’s
equation yields the short runvariable costs. This is just for convenience and ease of comparison.



9

are reduced, whenK is increased by one unit. Short-run variable costs are given as
G = PLL + PEE = C − PKK, so thatP̃K = −∂G/∂K = PK − ∂C/∂K, which in this case
is:

(5)

The long-run equilibrium condition implies thatP̃K = PK (being equivalent to∂C/∂K
= 0; that is, minimizing the total short-run costs with respect toK). This condition
yields the long-run stock of capital,K*, as:

(6)

If K* is inserted into the short-run demands for the flexible factors (L andE), the
long-run demands for the flexible factors (L* andE*) are obtained:4

(7)

4The regularity conditions∂2C/∂K2 > 0 and∂K*/∂PK < 0 together imply that −δKLPL − δKEPE > 0
and PK − γKK(PL+PM) > 0 so that the numerator and denominator of the fractions are both positive.
Therefore, no numerical sign is needed in the first fraction in (7) and (8), provided that the above
conditions are observed. For a description of regularity conditions for short-run cost functions, see
Browning (1983).
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(8)

If K* is inserted into the short-run cost function (C), the long-run cost function (C*)
results:

(9)

Finally, long-run marginal costs,MC* ≡ ∂C*/∂Y, can be calculated as

(10)

2B. The alternative long-run cost function approach (shadow/virtual prices)

In this section, the above-examined short-run cost function approach is contrasted
with the proposed long-run cost function approach, basing the derivations on a
long-run cost function instead − in this particular example the (original) long-run
generalized Leontief due to Diewert (1971) − and using shadow or virtual prices to
obtain corresponding short-run factor demands, costs and marginal costs.

Doing this, it is possible to turn the procedure of section 2A upside down,
beginning with a long-run cost function and ending up with a short-run cost
function. Operating as previously with three production factors, no technical
progress and constant returns to scale, the long-run costs are given as (see Diewert
(1971)):

(11)

The long-run generalized Leontief is homogenous of degree one in the factor prices,
and the long-run factor demands follow from Shephard’s Lemma:
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(12)

(13)

(14)

Finally, the long-run marginal costs are obtained by differentiating (11) with respect
to Y:

(15)

At this point, the crucial question − and the crucial question of this paper − is how
to get from the long-run cost function (or factor demands) to the corresponding
system of short-run factor demands, whereK is fixed at a predetermined level. At
first sight this seems impossible, asK does not appear in the long-run cost function
− and since the underlying production function is not known. But fortunately the
answer is very simple, as the problem is solved simply by artificially altering the
price of K, PK, until K* in (12) is equal to the predetermined levelK. When the
long-run demands for the flexible factors,L* andE*, are evaluated at this artificial
price, they yield the short-run demands for the self-same factors (see e.g.
Neary/Roberts (1980) or Squires (1994) for proofs and details. See also Pollak
(1969) and Deaton (1986) regarding rationing and shadow prices).

In the literature on rationing in demand systems, this price is usually denoted a
"virtual" price after Rothbart (1941), whereas it is more obvious to denote the
artificial price a shadow price in the context of producer behavior. This is so,
because it turns out that the shadow/virtual price concept defined here coincides
with the shadow price concept defined in the preceding section; that is, defined as
P̃K = −∂G/∂K = PK − ∂C/∂K; or minus the short-run variable costs differentiated
with respect toK (see Squires (1994) p. 238 for the proof).

The shadow price of the quasi-fixed factor,P̃K, is consequently found by solving
K* (12) with respect to its own price,PK. This yields the following expression:

(16)
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SubstitutingP̃K for PK in the long-run factor demands for the flexible factors ((13)-
(14)), the following equations are obtained:

(17)

(18)

In this particular factor demand system, it is seen thatK enters the demand forL
and E through the denominator (K/Y − βKK), pushing the short-run demand forL
andE towards infinity, as the capital-output ratio,K/Y, is lowered towards its limit,
βKK (assuming here thatβKK is positive). Here, the parameterβKK is crucial for the
size of the physical capacity limit, sinceK cannot be lowered belowβKKY for given
Y, andY cannot exceedK/βKK for given K.

The corresponding short-run cost function can be found by means of a central
formula linking short- and long run costs together:C = C*(Y, P̃K, PL, PE) +
(PK−P̃K)K, that is, evaluating the long-run cost function C*( ) at the shadow price
of K, and adding the difference between the observed and the shadow price ofK
multiplied by K itself (see e.g. Squires (1994) p. 238). Alternatively, it can of
course be found simply by insertingL and E into the definition of the short-run
cost,C = PKK + PLL + PEE. Both methods yield:

(19)
Regarding short-run marginal costs, the shadow price,P̃K, can be used once again,
as it can be shown that substitutingP̃K for PK in the expressions for the long-run
marginal costs,MC*, gives the short-run marginal costs,MC (see appendix A for
the proof). Alternatively,MC could be found by differentiating (19) with respect to
Y.
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(20)

3. Advantages of the long-run cost function approach (shadow/-
virtual prices)

In section 2A it was shown how to derive long-run factor demands (and costs) from
a short-run cost function, and in section 2B, the opposite was shown: namely how
to form short-run factor demands (and costs) from a long-run cost function. All in
all, four cost functions have been shown, as illustrated below:

Table 1. The cost functions of section 2A and 2B

Approach Section Short run Long run

The short-run cost func-
tion approach

2A Equation (1)
Morrison (1988)

→ Equation (9)
Follows from
(1)

The long-run cost func-
tion approach

2B Equation (19)
Follows from
(11)

← Equation (11)
Diewert (1971)

Note: the arrows indicate that one of the cost functions is used as basis, from which the other one is
derived.

The short-run Morrison GL cost function (1) and the long-run Diewert GL cost
function (11) are the ones traditionally presented and used in the literature, and are
fully representative of short- and long-run cost functions in general. Thelong-run
Morrison GL cost function ((9), derived from (1)) is not usually brought to light,
and theshort-runDiewert GL cost function ((19), derived from (11)) has not to my
knowledge been presented before.

Regarding the long-run cost functions of section 2A and 2B, it is noticed that the
long-run Morrison and Diewert cost functions are different mathematical ex-
pressions with different properties, as is seen by comparing equations (9) and (11).
Actually these forms do not have much in common, apart from the quadratic form
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of the prices ofL and E. Comparing alternatively the short-run cost functions
(equations (1) and (19)), these are necessarily different as well.5

Now, the whole point of this paper is to claim that it would be much simpler and
better to use a well-known long-run cost function such as e.g. the long-run Diewert
generalized Leontief as a basis, instead of trying to create a short-run cost function
oneself, such as the case is with e.g. the Morrison GL cost function. This is so,
because it is much easier to start out with a long-run cost function, but also because
the global properties of the well-known cost functions are already analyzed in great
detail (Caves/Christensen (1980), Barnett/Lee (1985), Despotakis (1986),
Diewert/Wales (1987)).

In the following, the principles of the shadow price approach are summarized, this
time in the general case withn factors, of whichk are quasi-fixed andl = n − k are
flexible. The approach is illustrated in table 1, explanations are below.

Table 2. Overview of the shadow price approach (of section 2B)

Long run Short run

Demand for quasi-fixed
factors

(a1) Xk
* = Xk

*(Y, Pk, Pl) (b1) Xk = Xk
*(Y, P̃k, Pl)

Demand for flexible
factors

(a2) Xl
* = Xl

*(Y, Pk, Pl) (b2) Xl = Xl
*(Y, P̃k, Pl)

Marginal costs (a3) MC* = MC*(Y, Pk, Pl) (b3) MC = MC*(Y, P̃k, Pl)

Note: Exogenous variables:Y, Pk, Pl andXk. Endogenous variables:Xk
*, Xl

*, MC*, P̃k, Xl andMC.

In the first column, the long-run factor demand functions and marginal cost function
are presented. These are often derived from a cost function, but could just as well
originate from a production function. The variables are to be interpreted as follows:
Xk is a vector of thek quasi-fixed factors, andXl is a vector of thel = n − k
flexible factors. The variablesPk and Pl are vectors of the corresponding factor
prices. Given the functional forms of Xk

*( ), Xl
*( ) and MC*( ), the calculation of

Xk
*, Xl

* andMC* is straightforward, asY, Pk andPl are exogenous variables.

Turning to the short-run behavior, the first step is to find thek shadow prices,P̃k,
ensuring that (b1) in table 2 is observed − assuming here, that these shadow prices
exist and are unique. With thesek shadow prices, the calculation ofXl andMC is

5Using the derived short-run Diewert GL cost function (19) as a basis, one could actually deduce
all the equations of section B by using the procedure outlined in section A, and one could also take
the derived long run Morrison GL cost function (9) as a basis and derive all the equations of section
A by the means presented in section B.



15

straightforward, since the functional forms, Xl
*( ) and MC*( ) are simply reused.

If (b1) is not analytically solvable with respect to the factor prices, the solution
might be found numerically. Alternatively, the approximations using long-run partial
price elasticities shown in section 7 could be very useful. If one does not already
know the long-run cost function, it is given asC* = C*(Y, Pk, Pl) = Pk′Xk

* + Pl′Xl
*,

whereas short-run costs can be found by using the formulaC = C*(Y, P̃k, Pl) +
(Pk−P̃k)′Xk; that is, evaluating the long run cost function at thek prices of the quasi-
fixed factors and adding the difference between the observed and shadow prices
multiplied by the factors themselves. This relationship is quite obvious, as C*(Y, P̃k,
Pl) = P̃k′Xk + Pl′Xl (see e.g. Squires (1994) p. 238). Alternatively, short-run costs
are of course obtainable asC = Pk′Xk + Pl′Xl. Total short-run costs differentiated
with respect to thek quasi-fixed factors are simply given as∂C/∂Xk = Pk−P̃k (see
e.g. Squires (1994) p. 238).

To sum up so far, the advantage of the shadow price approach sketched in table 2
is that once the nut is cracked (that is, the shadow prices of the quasi-fixed factors
are found in (b1)), there is no need for further nut-cracking, as the rest of the
calculations − given these shadow prices − only involves reusing the long-run
equations. In addition to that − as it will be demonstrated in the next section − the
short-run cost function approach almost inevitably implies serious asymmetries of
the isoquants of the underlying production function, potentially inducing substantial
problems in applied work.

4. Problems with the short-run cost function approach

In the last section, I suggested using shadow prices to obtain the corresponding
short-run cost function and factor demands from one of the existing and well-known
long-run cost functions. As previously mentioned, this has many advantages, as all
the well known mathematical expressions regarding the long-run cost function −
such as long-run elasticities, regular regions (consistency domains), separability
restrictions etc. − can be reused. Apart from these conveniences, however, I wish
to draw attention to a potentially very serious problem with the usual short-run cost
functions, as they may imply quite unrealistic long-run factor demand functions.

This problem is illustrated by means of the short-run Morrison GL cost function of
section 2A, comparing it with the long-run Diewert GL cost function of section 2B.
Regarding the short-run cost function approach, it will be shown that when the
substitution between the quasi-fixed and the other factors is low, the isoquants of
the underlying production function become unreasonable – without being out of the
consistency domain (regular region). Actually, one could say that the short-run
Morrison generalized Leontief cost function has a misleading name, as the
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functional form behaves very strangely, when the substitution betweenK and the
other factors is sufficiently low (that is, approaching the Leontief special case).

To illustrate this, I have chosen the six parameters of each of the two cost functions
so that they both yieldK* = L* = E* = 1 at pricesPK = PL = PE = 1 and production
level Y = 1. In addition to that, the parameters are chosen so that the long-run
partial price elasticities of the two functions are equal in the considered point, as
all own-price partial price elasticities are set equal to −0.33, and all cross-price
partial elasticities are set equal to 0.17. This implies that all Allen-Uzawa elasticities
of substitution (AUES) are 0.50 − that is, halfway between the Leontief (AEUS =
0) and the Cobb-Douglas (AUES = 1) special cases. The interesting issue is how
the functions behave away from the selected point.6

By altering the factor prices, the underlying isoquant may be drawn using the long-
run factor demand functions ((6)-(8) and (12)-(14), respectively), as it is done in the
following 3-D graphs. In the graphs, origo is in the most distant bottom right-hand
corner, and three lines intersect at the central point, (1, 1, 1), showing how the
factor demand system responds to modifications in one of the three factor prices
respectively. The circular rings denote combinations of the factor prices, where the
relative prices are twisted by 20%, 44% and so on, so that e.g. the six points of
intersection between the innermost circle and the lines show points on the isoquant
where one of the three factor prices is increased or decreased with 20% relative to
the others. The maximal twist in the relative prices is a factor 5.16, which is seen
as the ninth and outermost "circle".7

6In the considered "point", all factors are net substitutes, and all cost shares are equal, whereas
the substitution possibilities are in the low end of the spectrum. On the other hand, own-price partial
elasticities of substitution of −0.33 are not at all implausible, and elasticities of that magnitude can
be found in Morrison’s own empirical work (Morrison (1988)), or in section 8 of this paper. Here,
the parameters in the Morrison GL areαLL = αEE = 4, αLE = 0.5,δKL = δKE = −6 andγKK = 2.5. In the
Diewert GL all theβij ’s are equal to 1/3.

7Technical note: the circles in the 3-D graphs are constructed by making the three factor prices
run through the values ln(Pi) = 2/3 ln(R) sin(x + 2/3 π (i−1)), i = 1, 2, 3 and 0≤ x < 2π. The
parameterR indicates how much the relative prices are twisted, and in the graphsR = 1, 1.20, 1.44,
... , 5.16, respectively. For each choice ofR, the above construction contains the six special cases
where one of the three factor prices is increased or decreased by a factorR relative to the others (these
six cases occurring atx = π/6, 3π/6, 5π/6 and so forth). This method is quite useful for depicting
underlying isoquants of a three-factor long-run factor demand system.
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Figure 1. Isoquant for the Morrison short-run GL cost function

Figure 2. Isoquant for the Diewert long-run GL cost function

Note: the above graphs are pairwise stereograms, so that a 3-D image may be obtained, when the left
and the right images are made overlap by the eyes. This is most easily done holding the page in
outstretched arms. The pictures at the bottom of each box are 2-D "shadows" of the above figures.

In figure 1, the line from the center of the figure in the direction of the black square
indicates how the three factors respond to a reduction in the price ofK. This
increases the demand forK and decreases the demand for bothL andE. The main
problem of the short-run cost function is that when the price ofK is diminished
towards zero, the demand for all three factors tends towards a particular positive
level (marked by the black square), in contrast to the long-run cost function (see
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figure 2), whereK tends to infinity.8 IncreasingPK in the short-run cost function
in figure 1 means following the above-mentioned line in the reverse direction, and
it is seen that increasingPK by a factor five gives dramatic increases in the demand
for L andE, compared to the long-run cost function.9

What is particularly unpleasant about this is that the short-run GL cost function
could not be rejected on account of not being theoretically consistent with the
neoclassical assumptions. Actually, the isoquant in figure 1 (and 2 as well) is
globally concave and does not yield negative factor demands anywhere. This means
that the concept of "well-behavedness" or global consistency could perhaps need to
be tightened, since it does not e.g. rule out isoquants implying that all demands
converge to a specific strictly positive level (the black square in figure 1), when a
chosen factor price (here:PK) is driven towards zero. With the short-run GL cost
function this problem becomes worse, the smaller the substitution betweenK and
the other factors is. In this respect, as mentioned above, the short-run GL does not
fully live up to its name (containing the Leontief case as a special case), as very
unpleasant implications result from the substitution betweenK and the other factors
being close to zero.10

Finally, it should be emphasized that the usual formulation of the short-run translog
cost function (for the first example of using this form, see Atkinson/Halvorsen
(1976); for recent examples, see e.g. Berndt/Friedlaender/Chiang/Vellturo (1993),
Nemoto/Nakanishi/Madono (1993), or Shah (1992)) suffers from exactly the same
problem. Such a short-run translog − whereK is introduced in the quadratic form
in the same way as the factor prices − has the further disadvantage that it is not
possible to solve the equation yieldingK* analytically (in closed form), complica-
ting the analysis considerably.

8The reason why the demand for the three factors tend to a particular point (the black square) can
be seen in the short-run demands for the flexible factors (eq. (2) and (3)). In this concrete example,
δKL andδKE are both negative, whereasγKK is positive, implying that ifK is made sufficiently large,
∂L/∂K and∂E/∂K (for given Y) will sooner or laterbothbecome positive, implying that the isoquant
is bending in an inadmissible way. The black square is in fact denoting a limiting case, where∂L/∂K
= ∂E/∂K = 0.

9Of course, nobody says that the isoquant of the long-run Diewert GL cost function is the truth,
but actually this isoquant and a three-factor CES-isoquant with elasticity of substitutionσ = 0.50 and
equal cost shares turn out to be identical. So the conclusion is that the short-run Morrison GL cost
function differs much from a globally well-behaved functional form such as the CES − at least in this
(not unreasonable) case given the chosen elasticities and cost shares. Apart from that, one can argue
that there could be noa priori reason for treating one of the factors asymmetrically, as the case is
with K in the short-run Morrison GL (and short-run cost functions in general).

10In contrast to the original long-run Diewert GL, where zero substitution betweenK and the other
factors is obtained simply (and without any complications) by settingβKL = βKE = 0, see equation (12).
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5. Using the long-run Diewert GL cost function generally

In this section, the results concerning the (Diewert) long-run generalized Leontief
cost function of section 2B are generalized to then factor case withk quasi-fixed
factors andl = n − k flexible factors. However, this section could also be regarded
as a specific application of the general shadow price framework presented in section
3.

In this section, the GL cost function is extended slightly compared to section 2B,
as there is no longer assumed constant returns to scale, but instead − as in
Diewert’s original paper − that the underlying production function is homothetic,
so thatY in (11) is replaced by h(Y), where it is assumed that h(0) = 0, h′(Y) > 0
and h(Y) tends to infinity asY tends to infinity. The homothetic GL cost function
is given as (see Diewert (1971)):

(21)

whereP is an×1 column vector of then factor prices,B = [βij] is a n×n symmetric
matrix of parameters, and where the square root symbol means that the square root
of each element is taken. Shephard’s Lemma,X* = ∂C*/∂P, yields the long-run
factor demands:

(22)

where X is a n×1 column vector of factor levels, and whereP̂ denotes the
diagonalization ofP into an×n diagonal matrix. Then production factors are now
divided into k quasi-fixed factors andl = n − k flexible factors, so that (22) is
partitioned into:

(23)

That is,

(24)

(25)
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The next step is to isolatePk from (24) to obtain the shadow prices of the fixed
factors:

(26)

provided that the matrix (X̂k/h(Y) − Bkk) is non-singular. The square symbol means
squaring each element in the vector, and the derivation exploits thatP̂k

0.5Xk =
X̂kPk

0.5. The matrix (X̂k/h(Y) − Bkk) could be called the "characteristic" matrix, as its
inverted counterpart, (X̂k/h(Y) − Bkk)

−1, describes how the levels of the quasi-fixed
factors affect the flexible factors in the short run (see section 2B for a simple
example). InsertingP̃K in the place ofPK in the long-run demand equations for the
flexible factors (25) yields the short-run demands for the same:

(27)

The short-run costs are most easily found by usingC = Pk′Xk + Pl′Xl, yielding:

(28)
Long-run marginal costs are found by differentiating (21) with respect toY:

(29)

Partitioning again into the quasi-fixed and flexible factors yields:

(30)

Inserting thek shadow prices intoMC* gives the short-run marginal costs,MC, as

(31)

If the shadow prices,P̃K (26), are substituted into (31),MC is given as a function
of Y, Pl andXk.

Finally − addressing the attention to the underlying production function − as it has
been shown on the previous pages, it is not at all necessary to know the functional
form of the underlying production function, but as it is quite simple to deduct an
expression yielding it, it is derived below. The procedure is to assume thatn−1 out
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of then factors are fixed and subsequently derive the short-run demand for then’th
factor. As shown previously, the short-run factor demands are:

(32)

Since there is only one flexible factor,P̂l
−0.5 andPl

0.5 are both scalars and cancel out
yielding:

(33)

Here,Xl andBll are scalars, andBkl is a (n−1)×1 column vector. This equation gives
a relationship between then production factors,X1-Xn, and the production level,Y
− that is, the underlying production function. It can be shown that (33) is equivalent
to:

(34)

or

(35)

So the underlying dual "GL-production function" is given by the condition that the
"full" characteristic matrix is singular; that is, that this matrix has zero determinant.
Generally,Y would be given as the solution to a polynomial of degreen, so it
should be stressed that (35) only givesnecessaryconditions for the production
function.
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6. Introducing technical progress, scale effects etc.

Up to now, I have abstracted almost completely from technical progress (and other
exogenous variables) and scale effects. This has been fully deliberate, as such
generalizations are very simple to implement, provided that one is willing to accept
the plausibly minor assumption that the effects from technical progress (t) and the
production level (Y) are purelyfactor-augmenting; that is, affecting each factor
through a factor-specific efficiency-index,ei = ei(t, Y), defined below.

Starting out with a usual production function without efficiency indexes,Y = F(X1,
... , Xn), this yields the long- run factor demand functions:Xi

* = Xi
*(Y, P1, ... , Pn),

i = 1, ... , n, and the long-run cost functionC* = C*(Y, P1, ... , Pn). Using the
shadow price result, short-run factor demands can be directly derived from long-run
factor demands (see section 3 above). If it is assumed that onlyX1 is quasi-fixed,
the short-run factor demands will be of the formXi = Xi(Y, X1, P2, ... , Pn), i = 2,
... , n. Assigning now an efficiency index,ei, to each factor gives a production
function with disembodiedfactor-augmentingefficiency indexes,Y = F(e1X1, ... ,
enXn). Here, the functional form, F( ), is the same, and by rewriting the costs asC
= P1X1 + ... + PnXn = (P1/e1) (e1X1) + ... + (Pn/en) (enXn), it is easy to prove that the
following long-run factor demands result:

(36)

And the following long-run cost function:

(37)

From (36) it is seen that theefficiency-correctedfactor levels,eiXi
* respond to the

efficiency-correctedfactor prices,Pi /ei. The mathematical functions Xi
*( ) and

C*( ) are the same as without efficiency indexes, so the point is that it is very easy
to introduce disembodied factor-augmenting technological progress (or effects from
other exogenous factors) and/or scale effects into any system of long-run factor
demand functions (or into any long-run cost function). Similarly, short-run factor
demands are given as (assuming here, that there is only one quasi-fixed factor,X1):

(38)
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Generally, one can deduce all concepts from a "stripped down" or "raw" constant
returns to scale cost or production function without technical progress/other exo-
genous variables, andtheneasily introduce exogenous factors and scale effects via
these efficiency indexes. This is done simply by multiplying all factor levels and
dividing all factor prices with the corresponding efficiency indexes, just as if the
factors and the prices were pre-corrected for the efficiency. The only exception to
this rule is themarginal costs, where it must be remembered that the efficiency
indexes themselves can be functions ofY. Thus, if the efficiency indexes areY-
dependent, the expression yielding long-run marginal costs,MC* ≡ ∂C*/∂Y, must be
re-calculated in the light of this. This being done, short-run marginal costs can still
be found by inserting the shadow price(s) of the quasi-fixed factor(s) into the long-
run marginal cost function.

The indexes could be formulated as e.g.

(39)
Here, the second order effects and the cross effect betweent and log(Y) are
assumed identical in each of then efficiency indexes. Most interestingly, it can be
shown that if one takes a "raw" no technical progress/constant returns to scale long-
run translog cost function (see Christensen/Jorgenson/Lau (1971 and 1973) or
Diewert/Wales (1987) p. 46) and introduces efficiency indexes of the form (39) by
means of (37) – the result is the usual translog cost functionwith technical progress
and scale effects (see appendix B for proofs, more details, and a numerical
example). Thus, the 2n+3 translog-parameters that add flexibility to the "raw"
constant returns to scale translog (the latter containingn(n+1)/2 parameters) can be
exactly (mathematically) translated into the 2n+3 parameters of (39). Since the
translog cost function is fully flexible, and since (39) and the trend- and scale
effects of the translog cost function turn out to be exactly the same thing, it follows
that the introduction of efficiency indexes formulated as (39) adds full flexibility
to any "raw" no technical progress/constant returns to scale cost function.

In (39), the expressionωi1 + ω2t + φlog(Y) indicates – multiplied by 100 – by how
many per cent the efficiency of factori increases from periodt to periodt+1, and
the expressionψi1 + ψ2log(Y) + φt denotes by how many percent the efficiency
index increases, when the production level is increased by one percent. Other
formulations might prove equally useful, and other exogenous factors in addition
to time,t – such as i.e. infrastructure, education level/human capital, changes in the
capital stock (representing internal costs of installing/removing capital equipment),
mean age of the capital stock (capturing vintage-effects), climate, fuel-efficiency
etc. – may enter the efficiency indexes as well.
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Despite (39) being fully flexible, one could relax the restriction that the second
order effects must be identical for the different indexes. Thus, a more general
formulation would be the following:

(40)
If ωi1 = ω1, ωi2 = ω2, andφi = φ, technical progress is Hicks-neutral (unbiased), and
similarly, if ψi1 = ψ1, ψi2 = ψ2, andφi = φ, the production function is homothetic
(unbiased scale effects). Specifically, ifψi1 = ψ1, ψi2 = 0, andφi = 0, the production
function is homogenous of degree 1/(1–ψ1). The restriction ψi1 = ψi2 = φi = 0
implies constant returns to scale.

The advantage of the efficiency approach lies in two points. Firstly, it is easy to
introduce these indexes into any "raw" no technical progress/constant returns to
scale cost function or factor demand system without further ceremony, and
secondly, and most importantly, the interpretation of the parameters is much more
straightforward than e.g. trying to figure out the interpretation of a trend in a cost
share or factor intensity, as one has to do with the usual translog and generalized
Leontief trend formulations.

Regarding the efficiency index approach, it is also worth mentioning that the way
these efficiency indexes influence the long-run demands can be decomposed using
the following simple relationship:

(41)

whereX* is a n×1 vector of the long-run factor levels,I is a n×n identity matrix,
E is a n×n matrix of long-run partial price elasticities ande is a n×1 vector of
efficiency indexes. From this relationship it is seen that if there is no substitution
(E = 0), an increase in the efficiency of factori by 1% simply causes a correspon-
ding decrease in the use of factori itself by 1%. If there is non-zero factor
substitution, the use of factori would fall by less than 1%, and this is "used" to
reduce the use of one or more of the other factors as well.11 If the formulation
(40) is used, the trend- and scale effects can be decomposed into∂log(X*)/∂t =
–(I+E)[Ω1 + Ω2t + Φlog(Y)], and ∂log(X*)/∂log(Y) = –(I+E)[Ψ1 + Ψ2log(Y) + Φt],
whereΩ1, Ω2, Ψ1, Ψ2 andΦ aren×1 vectors of the efficiency parameters of (40).

11This is the normal case. However, if the substitution is very large, the use of factori itself might
even rise, if it gets more efficient. This would be the case if the own-price elasticity of factori is
below −1. Besides, a rise in the efficiency of factori rises the use of those of the other factors that
are complementary toi (negative cross-price elasticities).
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7. Useful approximations between short- and long-run factor
demand

As I see it, using a long-run cost function as a basis for deriving all necessary
short-run concepts entails a lot of advantages, compared to using a short-run cost
function. This claim is dealt with in the previous sections, but there is of course the
problem of what to do, if it is not possible to find the shadow price(s)analytically
(in closed form). This is of course unpleasant, even though one could of course
always find the shadow price(s) by means of numerical methods instead. But one
can not a priori be sure that the shadow price(s) can be solved analytically from an
arbitrary long-run factor demand system. This is e.g. not possible regarding the
factor demands derived from the long-run translog cost function or the nested CES
production function, whereas it is e.g. possible in the case of the long-run
generalized Leontief or long-run normalized quadratic cost functions12. As stated
above, this problem is of course unpleasant, but it has its exact counterpart in the
short-run cost function "sphere", as one can similarly not a priori be sure that the
corresponding long-run concepts can be found analytically from the short-run
concepts. Actually, this is not possible regarding the most common formulation of
a short-run translog cost function (see e.g. Atkinson/Halvorsen (1976), or the more
recent Berndt/Friedlaender/Chiang/Vellturo (1993)).

Instead of relying on numerical methods (which might complicate the estimation
method considerably), one could alternatively use the following approximations
between short- and long-run demands. The idea is to use a logarithmic linearization
of the relationship between the factors and the factor prices around the long-run
levels of the former,X*:

(42)

Here,X* is an×1 vector of then factors,E is an×n matrix of long-run partial price
elasticities andP is an×1 vector of factor prices. Partitioning (42) into thek quasi-
fixed andl = n − k flexible factors, the following is obtained:

(43)

12Regarding the normalized quadratic cost function, see Diewert/Wales (1987) (they call it "the
symmetric generalized McFadden cost function"), or see Morrison (1986). Using this functional form,
the shadow prices are most easily computed if none of the quasi-fixed factors are at the same time
selected to be the (asymmetric) "normalizing" factor. For the first example of using ashort-run
normalized quadratic cost function, see Berndt/Fuss/Waverman (1980).
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This equation expresses how the levels ofXk
* andXl

* change, when e.g. the prices
of the quasi-fixed factors,Pk, change. As shown in table 2 in section 3, the shadow
price result implies changing the prices of the quasi-fixed factors,Pk, until the
levels of the quasi-fixed factors,Xk

*, are equal to their predetermined levels,Xk.
From (43) it follows that these virtual/shadow prices, calledP̃K, can be approxima-
ted as (please note in the two following formulas that the shadow price method
leavesPl unaltered):

(44)

provided that the submatrixEkk is non-singular. According to the shadow price
result, the long-run demands for the flexible factors evaluated at the shadow prices
of the quasi-fixed factors yield the short-run demands for the former. That is (cf.
(43)),

(45)

Inserting (44) into (45) results in

(46)

These areapproximatedshort-run factor demands for the flexible factors (Xl), but
it must be made clear, that the approximation may be less good far from the long-
run levels. But under normal circumstances − that is, provided that the quasi-fixed
factors do not deviate too much from their long-run levels − the formula should be
useful for most practical purposes.13

To illustrate the relationship, consider the case of only one quasi-fixed factor,K,
and two flexible factors,L and E. Around the long-run levels,K*, L* andE*, the

13Regarding short-run marginal costs the following approximation may be used, provided here, that
there is constant returns to scale. With constant returns to scale,MC* can be approximated by

where sk
* and sl

* are vectors of the long-run cost shares. This is simply a logarithmic version of
Shephard’s Lemma, sinceMC* = AC* under constant returns to scale. The short run costs,MC, are
found by evaluating the above equation at thek shadow prices. This gives the approximation



27

formula implies that log(L) ≈ log(L*) + eLK/eKK [log(K) − log(K*)], and log(E) ≈
log(E*) + eEK/eKK [log(K) − log(K*)], whereeij is the long-run partial price elasticity
of factor i with respect to factor pricej. If e.g.eEK is negative, entailing complemen-
tarity betweenK andE, it is seen that moreK raises the demand forE, too, as one
would expect.

The short run costs,C, differentiated with respect to the quasi-fixed factors,Xk, is
given as (see Squires (1994), p. 238):

(47)

This concept is often used in the context ofadjustment costs; that is, adding the
time-differences of the quasi-fixed factors to the cost function (usually in the form
of "internal" or "external" costs, see e.g. Denny/Fuss/Wavermann (1981) or
Morrison (1988)). This approach aims at explaining the rigidities of the quasi-fixed
factors, and the results often make use of the second derivatives of the short-run
costs with respect to the quasi-fixed factors, as these expressions can be used to
form approximative adjustment paths. Around the long run levels of the quasi-fixed
factors, the second derivatives can be approximated by the following formula
(simply rewriting (44)):

(48)

where the hat denotes diagonalization of the vector. Again, if there were only one
quasi fixed factor,K, the formula would say that∂2C/∂K2 ≈ −PK/(eKK K*) aroundC
= C*, so that if the own-price elasticity ofK, eKK, is very low (very low sub-
stitutability), the short run cost function bends very strongly aroundC = C*. This
implies that small deviations betweenK and K* makesC exceedC* by a large
amount.

To complete the picture, it should be noted that this paper does not deal with the
problem of explainingwhy the quasi-fixed production factors are not flexible – and
how the quasi-fixed factors adjust over time. This would imply discussing among
other things adjustment costs and uncertainty, and going into that discussion would
carry us too far. I would instead refer the interested reader to Nickell (1985) or the
outstanding Galeotti (1996), and only note that Nickell’s paper shows that under
some reasonable assumptions regarding the short-run cost function, adjustment
costs, and expectation rules, dynamic optimization implies that the quasi-fixed
factors adjust to their long-run levels by means of simple error correction
mechanisms.
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8. An example using the Berndt-Wood data

To illustrate the above techniques, some estimations on the much used Berndt-
Wood data set (covering US manufacturing over the period 1947-71) are presented.
In the estimations capital (K), labour (L), energy (E) and materials (M) are
described as a function of the four corresponding factor prices, the production level
(Y), and time (t).14

Diewert/Wales (1987) use the same data set to estimate – among other things –
translog- and generalized Leontief cost functions, with full flexibility regarding
price elasticities, trend- and scale effects. As I see it, however, these estimations
yield implausible scale effects, especially forK andE, probably because log(Y) and
t are correlated with a correlation coefficient of 0.971, so that trend- and scale
parameters become difficult to identify separately.

In order to avoid these unpleasant multicollinearity problems and obtain more easily
interpretable results, I use aconstant returns to scalelong-run (Diewert) generalized
Leontief cost function. Regarding technical progress, the efficiency indexes of
section 6 are implemented, withoutY-effects, and using unrestrictedt2-terms; that
is, two trend parameters in each of the four efficiency indexes. The following
estimation is static, assumingK = K*, L = L*, E = E* andM = M*.15

Table 3. Estimation of a static factor demand system derived from a long-run
generalized Leontief cost function

Long-run partial price elasticities Growth of eff. ind. Adjustment
PK PL PE PM 1949 1971 λ1 λ2 SEE DW JB

K −0.18 0.29 −0.09 –0.02 0.6% 1.5% 1.00 1.00 6.5% 0.83 0.8

L 0.04 −0.12 0.09 –0.01 0.1% 1.4% 1.00 1.00 2.6% 1.16 0.1

E −0.09 0.59 −0.50 0.00 0.8% 3.5% • • 5.1% 0.91 1.8

M 0.00 0.00 0.00 0.00 0.4% 0.2% • • 1.4% 1.45 6.6

Note: The estimation period is 1948-71, and the price elasticities are of the type∂log(Xi)/∂log(Pj).
JB is the Jarque/Bera test for normality of the residuals and should not exceedχ2

95%(2) = 6.0.
Log likelihood = 228.83. The cost function is not concave at any data point.

14See Berndt/Wood (1975) and Berndt/Khaled (1979) regarding the construction of the data.

15More precisely, equation (22) with h(Y) = Y is used. All of these four demand equations are
extended with efficiency indexes in the manner shown in (36), and logarithms are taken on both sides
of the equality signs. The efficiency indexes are of the form (40) with the last three terms suppressed.
The estimation procedure is maximum likelihood, assuming that the disturbance terms follow a
multivariate normal distribution with zero means and constant variances and covariances.
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The 4×4 numbers to the left are long-run partial price elasticities (evaluated in
1971), where it is among other things seen thatK andE are complementary. The
two columns of growth rates of the efficiency indexes (in 1949 and 1971,
respectively) show e.g. that the efficiency growth ofK changed from 0.6% p.a. in
1949 to 1.5% p.a. in 1971. The Jarque/Bera tests do not indicate serious problems
with the assumption of the error terms being normally distributed, whereas the
Durbin-Watson tests are not very convincing. To a large extent, the elasticities
resemble the elasticities found in Diewert/Wales (1987) (table 4, rows 3 and 4),
where there are similar problems ofM being fully or almost price insensitive
(corresponding toM being strongly separable).

Dynamizing this system – here abstracting from possible cross-effects in the
adjustment ofK andL – it is now assumed thatK andL adjust to their long-run
levels according to the following simple error correction mechanism (here forK):

(49)

whereλ1 andλ2 are adjustment parameters (see the end of the preceding section for
a justification of using an error correction mechanism). Utilizing the shadow price
results of section 5 to obtain short-run factor demand equations forE andM, the
following result is obtained:16

Table 4. Estimation of a factor demand system derived from a long-run
generalized Leontief cost function, withK and L quasi-fixed and E
and M flexible

Long-run partial price elasticities Growth of eff. ind. Adjustment
PK PL PE PM 1949 1971 λ1 λ2 SEE DW JB

K −0.49 0.50 −0.34 0.33 12.4% −13.9% 0.10 0.25 2.2% 0.73 4.1

L 0.11 −0.31 0.04 0.17 –0.6% 3.5% 0.78 1.03 1.8% 0.65 1.2

E −0.34 0.16 −0.41 0.59 12.6% –15.8% • • 2.3% 0.91 1.4

M 0.04 0.09 0.07 −0.19 –1.2% 2.6% • • 2.0% 1.00 0.8

Note: The estimation period is 1948-71, and the price elasticities are of the type∂log(Xi)/∂log(Pj).
JB is the Jarque/Bera test for normality of the residuals and should not exceedχ2

5%(2) = 6.0.
Log likelihood = 265.66. The cost function is concave at all data points.

16More precisely, equation (22) with h(Y) = Y is used as regardsK* andL*, and equation (27) with
h(Y) = Y is used as regardsE andM. All of these four demand equations are extended with efficiency
indexes in the manner shown in (36) and (38), respectively, and logarithms are taken on both sides
equality signs in theE- andM-equations. The efficiency indexed are of the form (40) with the last
three terms suppressed.
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From table 4 it is seen that the DW-tests are still not convincing, but it must be
kept in mind that the dynamic formulation is very simple with only four adjustment
parameters. The log likelihood value increases significantly from 228.83 to 265.66
(comparing twice the difference = 73.66 withχ2

95%(4) = 9.49), most notably due to
the improved SEE of the residuals ofK and E. Furthermore,M’s own-price
elasticity grows (numerically) to –0.19, and the cost function is now monotonous
and concave in the prices at all data points. In the dynamic estimation, the growth
rates of theK- andE-efficiencies have been decreasing over the estimation period,
hinting that technological progress and capital/energy could be conceived of as
being complementary in the second half of the estimation period. In the following
figure, the historical fit is depicted:

Figure 3. Historical fit, dynamic model
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In the figure, it can among other things be seen thatK* exceedsK in most of the
estimation period (the average gap being 17%), which is reflected inE* also
exceedingE (due to the complementarity betweenK andE). If the production level,
Y, is increased by 1% in the dynamic model, the adjustment looks as follows:
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Figure 4. The dynamic effect of a 1% increase in the production level
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In the long run, all factors are also increased by 1%, due to the imposed constant
returns to scale. In the short run, however,K andL react sluggishly, and this causes
M to overshoot in the short run, whereasE follows K quite closely due to the
complementarity of the two factors. It can be tested whetherL is also flexible, but
this is not so, confirming the hypothesis of firms performing "labour-hoarding" in
the short run. The short-run (first year) effect onK and L is 0.10% and 0.78%,
respectively, indicating that labour is moving much more rapidly than capital,
whereas the short-run effects onE andM are –0.04% and 1.33% respectively.17

All in all the dynamic estimation compares favourably with the static estimation,
apart maybe from the efficiency indexes ofK and E changing a bit rapidly. The
effects of the efficiencies on factor demand is, however, propagated through the
matrix of price elasticities (cf. equation (41) in section 6), and the effects on factor
demand and costs are much less different, as shown below:

17To illustrate one of the approximation formulas of section 7, the last-mentioned effects on the
flexible factors (E andM) can be calculated as follows, using only the effects onK andL together
with the relevant submatrices of the matrix of long-run partial price elasticities (cf. equation (46)):

provided that the incoming numbers are not rounded off as it is done in table 3. Hence, the long-run
partial price elasticities fully determine how a disequilibrium in the fixed factors translates into a
disequilibrium in the flexible factors.
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Table 5. Effects of technological change on inputs and total costs

Static Dynamic

1948 1971 1948 1971

K –0.6 –1.3 –2.0 –0.8

L –0.9 –1.6 –1.1 –0.8

E –0.9 –2.5 –1.7 2.6

M –0.4 –0.2 –0.1 –0.8

C –0.6 –0.8 –0.6 –0.6

Note: Table entries are 100∂log(Xi)/∂t for input i and 100∂log(C)/∂t for total costs.

From the table, it can among other things be seen that the annual decrease of total
costs due to technological progress has been between 0.6% to 0.8% in both models.

9. Conclusion

In this paper, it has been shown that itis possible to start out with a long-run cost
function and derive all necessary short-run concepts by the means of shadow or
virtual prices. This approach entails many theoretical and practical advantages, apart
from clarifying the relationship between the short and the long run considerably.
And if the shadow prices are not analytically computable, some very easy and
useful approximations are provided, making use of long-run partial price elasticities.

As an example, using the original long-run Diewert generalized Leontief cost
function, one can analytically compute all the usually employed short-run concepts,
such as short-run factor demands, costs and marginal costs by means of shadow
prices (see sections 2B and 5). This makes the generalized Leontief cost function
a quite promising candidate for applied econometric work, if one wants to make
sure that the short-run behavior (short-term dynamic adjustment) is in agreement
with standard neoclassical theory.

However, the shadow price approach presented here might be useful in many other
cases, as it is by no means restricted to work only with e.g. the generalized Leontief
cost function. The shadow price approach may be used onany system of long-run
factor demand functions, regardless of whether these are constructed by means of
production or cost functions, and regardless of whether the cost function is e.g. a
translog or a generalized Leontief or something completely different.

As to technical progress or other exogenous factors, scale effects, etc., these can be
easily introduced into any cost function or factor demand system by means of factor
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augmenting efficiency indexes. It is shown that the trend- and scale parameters of
the translog cost function can be exactly translated into corresponding parameters
in the above-mentioned efficiency indexes. All in all, the efficiency methodology
seems very promising, as it is both fully flexible and very easy to understand and
interpret.

Finally, it is shown in section 8 that it is possible to estimate a quite plausible
factor demand system (with four production factors, of which two are assumed
quasi-fixed) on the Berndt-Wood data set, using efficiency indexes together with
the "original" (Diewert) long-run generalized Leontief, and using shadow prices to
deduct short-run factor demands for the two flexible factors. The results indicate
that much profit (both regarding fit and economic properties) can be obtained from
using a dynamic factor demand system compared to a static one.

All in all, I feel that the results presented in this paper could prove extremely useful
in applied econometric work, because the shadow price approach provides an easy
and very transparent way of relating short- and long-run concepts in a consistent
manner, in contrast to e.g. basing the work on short-run cost functions, where the
derivations are often very complex and confusing, and where one is all but sure
about the global properties of the involved functional forms. In addition to that,
using efficiency indexes also seems to be a very convenient and easily interpretable
way of introducing technical progress/other exogenous factors, scale effects etc.,
into any factor demand system.
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Appendix A: Proof of shadow price result regarding marginal
costs

This appendix contains a proof that short-run marginal costs are found by inserting
the shadow price into the relation for the long-run marginal costs.

The short-run costs observe the following relationship (see Squires (1994), p. 238):

(A1)

whereXi is factori, Pi its factor price. DefiningC̃* asC* evaluated at thek shadow
prices,

(A2)

Since dXi/dY = 0, i = 1, ... ,k, it follows that

(A3)

as∂C̃*/∂P̃i = Xi using Shephard’s Lemma. Since the long-run marginal costs,MC*,
are given as

(A4)

the short-run marginal costs,MC, are given by:

(A5)

That is, the long-run marginal costs, evaluated at thek shadow prices, are identical
to the short-run marginal costs.
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Appendix B: Proof regarding the translog cost function and
efficiency indexes

The usual long-run translog cost function is given as (here with no technical
progress/constant returns to scale, see e.g. Christensen/Jorgenson/Lau (1971 and
1973) or Diewert/Wales (1987)):

(B1)

whereC* is the long-run costs,Y the production level, andP a vector of factor
prices. As to the parameters,a0 is a constant,A is a n×1 vector of parameters
summing to unity, andB is a n×n symmetric matrix of parameters with rows and
columns summing to zero. It is now assumed that the efficiency indexes are
formulated as follows:

(B2)

whereΩ1 andΨ1 aren×1 vectors of parameters, andΩ2, Ψ2 andΦ aren×1 vectors
of identical parameters (cf. (39)). Introducing the efficiency indexes (B2) into (B1)
by means of (37), and utilizing thatB Ω2 = B Ψ2 = 0 since the rows and columns
of B sum to zero, the following is obtained:

(B3)

where

(B4)
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Here,at, ay, att, bty andayy are scalars, whereasBt andBy aren×1 vectors, where the
parameters sum to zero since the rows and columns ofB sum to zero. These
parameters are the usual translog trend- and scale parameters. One can go the
opposite way from the usual translog-parameters to the efficiency parameters in the
following steps:Ω1 is determined from theat- andBt-equations,Ψ1 from theay- and
By-equations,Ω2 from theatt-equations,Ψ2 from theayy-equations, andΦ from the
bty-equation (when findingΩ1 andΨ1, note thatB can not be inverted since it does
not have full rank. Note also that in the Cobb-Douglas special case ofB = 0, the
equations do not have any solution, ifBt ≠ 0 or By ≠ 0. If Bt = By = 0, there is no
unique solution, however).

Since (B3) is the normal way of introducing trend- and scale effects into a translog
cost function (see e.g. Diewert/Wales (1987)), it is hereby shown that the normal
translog cost function is mathematically equivalent to using a "raw" no technical
progress/no scale effects translog cost function and augmenting it with the
efficiency indexes of (B2). Since the usual translog cost function is flexible, it
follows that efficiency indexes of the form (B2) are capable of adding flexibility to
any "raw" no technical progress/no scale effects cost function.

To illustrate, it is shown below how to translate the estimated translog trend- and
scale parameters from Diewert/Wales (1987) into the equivalent efficiency
parameters. Diewert/Wales use the Berndt-Wood data set (withn = 4 production
factors, K, L, E and M), and estimate the following 21 =n(n+1)/2 + 2n + 3
translog-parameters:
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Table B1. Parameter estimates, standard translog, Diewert/Wales (1987)

Parameter Estimate Parameter Estimate

a0 6.488 at 0.01029

a1 0.2984 ay 0.6204

a2 0.04958 bt1 –0.0002000

a3 0.04611 bt2 0.001228

b11 0.1387 bt3 0.0007784

b12 0.01271 by1 –0.03102

b13 0.008168 by2 –0.04075

b22 0.03440 by3 –0.02874

b23 –0.007818 att 0.001179

b33 0.01501 bty –0.01294

ayy 0.01633

Note: The "missing" parameters (a4 etc.) can be found from the the restrictionsΣai = 1, Σbti = 0, Σbyi

= 0, Σbij = Σbji = 0, i = 1-4.

Unfortunately, Diewert/Wales do not report their parameter estimates, so I have
reproduced their estimation. It should be noted that I have scaled the variables so
that the four factor prices are equal to 1 in 1971, and so thatY = 1 and time,t =
0. The latter scalings ensures that the efficiency indexes are equal to 1 in 1971.
This is for convenience only. Using (B4), the 11 = 2n + 3 trend- and scale
parameters in the right part of table B1 can be translated into the following
efficiency parameters:
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Table B2. The parameters of table B1, translated into efficiency parameters

t t2 log(Y) log2(Y) t log(Y)

K log(e1) 0.005525 –0.001032 0.05900 0.1431 0.008255

L log(e2) –0.06756 –0.001032 2.093 0.1431 0.008255

E log(e3) –0.09701 –0.001032 3.163 0.1431 0.008255

M log(e4) –0.006799 –0.001032 0.1855 0.1431 0.008255

Note: The parameters in thet2-, log2(Y)- andt log(Y)-columns are identical, so that the table contains
11 = 2n + 3 independent parameters.

Sincet andY are scaled so that they are equal to 0 and 1 in 1971, respectively, it
is seen that the efficiency of the four factors had an annual growth rate due to time
alone of 0.6%, –6.8%, –9.7% and –0.7% in 1971 (cf. thet-column). These annual
growth rates are reduced by 0.103 %-points per year, and by 0.826 %-points per 1
percent change inY (cf. the t2-andt log(Y)-columns). In 1971, the efficiency of the
four factors grows with 0.06%, 2.09%, 3.16% and 0.19%, respectively, whenY is
increased by 1% (cf. the log(Y)-column). These elasticities grow by 0.14%-points,
whenY grows by 1%, and by 0.00826%-points per time period (cf. the log2(Y)- and
t log(Y)-columns). As indicated in the text – due tot andY being highly correlated
– the scale effects in the estimation does not seem very sensible. This is seen by the
fact that in 1971 the efficiencies ofL and E grow by 2.09% and 3.16%, respec-
tively, whenY grows by 1%.

In 1971, the scale elasticities of the factors themselves are –0.20, 0.52, 0.00 and
0.79, respectively, hinting that something is "wrong" with theY-effects ofK andE.
However, when the parameters are translated into efficiency parameters, it is seen
(table B2) that the scale-elasticity of theK-efficiency was very small (0.06) in 1971.
So the strange output-elasticity ofK stems in reality from the strange scale-
elasticities of theL- and E-efficiencies. (See (41) and the following explanations
regarding the relationship between efficiency indexes and long-run factor demand).
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