





#### **Main double Indicator Methods**

Double Deflation:

$$Y_t / IPY_t - C_t / IPC_t$$

Double Extrapolation:

$$Y_0 \times IVY_t - C_0 \times IVC_t$$
, using volume index as extrapolator

Extrapolation-Deflation combination:

Sandra Maresca, April 18, 2012



### **Main single Indicator Methods**

Direct deflation by price index of output:  $VA_t / IPY_t$ 

Direct deflation by price index of input:  $VA_t$  /  $IPC_t$ 

Direct Extrapolation by gross output volume index:  $VA_0 \times IVY_t$ 

Direct deflation by wage rate index:

 $VA_{t} / IW_{t}$ 

Direct extrapolation by an index of numbers of workers :  $VA_0 \times IN_t$ 

Sandra Maresca, April 18, 2012



# Practical problems of using double indicator methods

- More demanding in terms of data
- When GVA is a small portion of output and when the relative prices change drastically, the <u>double</u> <u>indicator</u> method sometimes gives erratic result (even negative value added)
- > Thus, <u>double</u> <u>indicator</u> methods are **not** uniformly recommended.

Sandra Maresca, April 18, 2012



#### Method for controlling the erratic result

- > Y<sub>t</sub> and C<sub>t</sub> can be decomposed
- $ightharpoonup Y_t = IPY_t * Qo_t ; C_t = IPC_t * Qi_t$
- $\succ$  Where  $Qo_t$  and  $Qi_t$  are the unobserved quantities of output and input.
- > We focus our attention on the ratio

$$C_t / Y_t = (IPC_t * Qi_t) / (IPY_t * Qo_t)$$

Sandra Maresca, April 18, 2012



#### Method for controlling the erratic result

> The dynamic of the ratio is

$$(C_t / C_{t-1})/(Y_t / Y_{t-1}) =$$

$$(IPC_t * Qi_t)/(IPC_{t-1} * Qi_{t-1})$$

$$(IPY_t * Qo_t)/(IPY_{t-1} * Qo_{t-1})$$

Sandra Maresca, April 18, 2012



#### Method for controlling the erratic result

- Hyp: the "unobserved" Qi can not undergo sharp fluctuations in the short term as it depends on the production technology.
- We can, therefore, impose the condition

$$-n\sigma \leq \frac{IPC_{t} / IPC_{t-1}}{IPY_{t} / IPY_{t-1}} / \frac{C_{t} / C_{t-1}}{Y_{t} / Y_{t-1}} \leq n\sigma [1]$$

Where  $\sigma$  is a standard deviation calculated on time series or cross section data and n is a subjective parameter.

Sandra Maresca, April 18, 2012



#### Method for controlling the erratic result

- > If the condition [1] is not verified we correct IPC so as to place the difference [1] corresponding to the extreme of the range considered  $(\pm n\sigma)$ .
- > The correction is performed on the IPC as it is not directly observed.

Sandra Maresca, April 18, 2012



## The end

> Thank you for your kind attention

