Sample Size Calculation

Mārtiņš Liberts

Central Statistical Bureau of Latvia

16-20 February 2014

Introduction

Proportions

Sample size relation with $\ensuremath{\mathsf{CV}}$

Sample size for stratified sampling

Conclusions

Introduction

Proportions

Sample size relation with $\ensuremath{\mathsf{CV}}$

Sample size for stratified sampling

Conclusions

Introduction

- Sample size calculation with an aim to meet survey requirements is probably the hardest task in survey sampling
- ► Survey requirements:
 - To estimate the key population parameters with required precision
 - To estimate many other population parameters

It is hard because

- There is not enough information about the target population (especially at unit level)
- Assumptions have to be made
- Survey requirements can be contradictory
- The achieved precision depend on many non-sampling aspects:
 - Non-response
 - Frame errors
 - Measurement errors
- ► The survey budget is limited

Introduction

Proportions

Sample size relation with $\ensuremath{\mathsf{CV}}$

Sample size for stratified sampling

Conclusions

Introduction

 Calculation of sample size is easier if population parameter is proportion

$$p = \frac{1}{N} \sum_{U} y_i$$
$$y_i \in \{0, 1\}$$

• Assumption: population size N is known

SRS

$$\hat{p} = \frac{1}{N} \sum_{s} y_{i} w_{i}$$
$$w_{i} = \frac{N}{n}$$
$$\hat{p} = \frac{1}{N} \frac{N}{n} \sum_{s} y_{i} = \frac{1}{n} \sum_{s} y_{i}$$

Mārtiņš Liberts (CSB)

8 / 30

SRS

$$V(\hat{p}) = \frac{1 - \frac{n}{N}}{n}S^2$$
$$S^2 = \frac{1}{N-1}\sum_U (y_i - \bar{Y})^2$$
$$S^2 = \frac{N}{N-1}p(1-p)$$
$$V(\hat{p}) = \frac{1 - \frac{n}{N}}{n}\frac{N}{N-1}p(1-p)$$

Mārtiņš Liberts (CSB)

9 / 30

$$SE(\hat{p}) = \sqrt{\frac{1 - \frac{n}{N}}{n} \frac{N}{N - 1} p(1 - p)}$$
$$MoE(\hat{p}) = Z_{\beta} \sqrt{\frac{1 - \frac{n}{N}}{n} \frac{N}{N - 1} p(1 - p)}$$
$$Z_{.95} = 1.96$$

For example:

- If MoE = .01, the confidence interval is $\pm .01$.
- ▶ We can conclude that $|p \hat{p}| < .01$ with probability .95.

The question to be asked to the user of statistics:

- What is the largest acceptable error?
- ► What is the acceptable margin of error? Mārtiņš Liberts (CSB)

SRS

$$MoE\left(\hat{p}\right) = Z_{\beta}\sqrt{\frac{1-\frac{n}{N}}{n}\frac{N}{N-1}p\left(1-p\right)}$$

$$\Downarrow$$

$$n = \frac{N}{\frac{(MoE(\hat{p}))^{2}(N-1)}{Z_{\alpha}^{2}p(1-p)} + 1}$$

$$\max_{p}\left(n\right) = \frac{N}{\frac{(MoE(\hat{p}))^{2}(N-1)}{.25Z_{\alpha}^{2}} + 1}$$

Mārtiņš Liberts (CSB)

11 / 30

SSRS

If stratification is done by the domains of interest

$$n_d = \frac{N_d}{\frac{(MoE(\hat{p}))^2(N_d-1)}{Z_{\alpha}^2 p(1-p)} + 1}$$

In case of non-response

$$m_d = \min\left(N_d; \left\lfloor\frac{n_d}{r}\right\rfloor + 1\right)$$

where r is a response rate

Sample Size Calculator

- Excel file Sample_size_calc_ver021_ENG.xlsx
- http://www.surveysystem.com/sscalc.htm

Introduction

Proportions

Sample size relation with $\ensuremath{\mathsf{CV}}$

Sample size for stratified sampling

Conclusions

Variance with two sample sizes

$$V_0 = N^2 \frac{S^2}{n_0}$$
$$V_1 = N^2 \frac{S^2}{n_1}$$

$$\frac{V_0}{V_1} = \frac{n_1}{n_0}$$

Variance with two sample sizes

$$n_1 = \frac{V_0 n_0}{V_1}$$

If
$$\frac{V_1}{V_0} = \frac{1}{2} \Rightarrow n_1 = 2n_0$$

SE and CV with two sample sizes

$$\begin{split} \frac{SE_0^2}{SE_1^2} &= \frac{n_1}{n_0} \\ & \frac{CV_0^2}{CV_1^2} = \frac{n_1}{n_0} \\ & n_1 = \frac{SE_0^2n_0}{SE_1^2} = \frac{CV_0^2n_0}{CV_1^2} \\ \end{split}$$
 If $\frac{SE_1}{SE_0} &= \frac{1}{2} \Rightarrow \frac{SE_1^2}{SE_0^2} = \frac{1}{4} \Rightarrow n_1 = 4n_0$

SE and CV with two sample sizes

Example: $CV_0 = 0.05$ and $CV_1 = 0.04$

$$\frac{CV_1}{CV_0} = \frac{4}{5} = 0.8$$
$$n_1 = \frac{n_0}{0.8^2} = \frac{n_0}{0.64} = 1.5625n_0$$

Introduction

Proportions

Sample size relation with $\ensuremath{\mathsf{CV}}$

Sample size for stratified sampling

Conclusions

Task

- Task: to calculate a sample size and sample allocation for stratified sampling design with an aim to achieve specified precision for domains.
- Conditions:
 - The domains of interest are non-overlapping
 - Each stratum belongs to only one domain
 - Populations size N_{dh} is available for each stratum
 - Populations total Y_{dh} is available for each stratum
 - Estimates of S^2_{dh} are available for each stratum

The Population

Domain	Str1	Str2	Str3	Str4	Str5	Str6	Str7	Str8
Dom1	N_{11}	N_{12}	N_{13}	N_{14}	N_{15}	N_{16}	N_{17}	N_{18}
Dom2	N_{21}	N_{22}	N_{23}	N_{24}	N_{25}	N_{26}	N_{27}	N_{28}
Dom3	N_{31}	N_{32}	N_{33}	N_{34}	N_{35}	N_{36}	N_{37}	N_{38}
Dom4	N_{41}	N_{42}	N_{43}	N_{44}	N_{45}	N_{46}	N_{47}	N_{48}

The Population

Domain	Str1	Str2	Str3	Str4	Str5	Str6	Str7	Str8
Dom1	Y_{11}	Y_{12}	Y_{13}	Y_{14}	Y_{15}	Y_{16}	Y_{17}	Y_{18}
Dom2	Y_{21}	Y_{22}	Y_{23}	Y_{24}	Y_{25}	Y_{26}	Y_{27}	Y_{28}
Dom3	Y_{31}	Y_{32}	Y_{33}	Y_{34}	Y_{35}	Y_{36}	Y_{37}	Y_{38}
Dom4	Y_{41}	Y_{42}	Y_{43}	Y_{44}	Y_{45}	Y_{46}	Y_{47}	Y_{48}

The Population

Domain	Str1	Str2	Str3	Str4	Str5	Str6	Str7	Str8
Dom1	S_{11}^2	S_{12}^2	S_{13}^{2}	S_{14}^2	S_{15}^{2}	S_{16}^{2}	S_{17}^2	S_{18}^2
Dom2	S_{21}^2	S_{22}^{2}	S_{23}^{2}	S_{24}^2	S_{25}^{2}	S_{26}^2	S_{27}^2	S_{28}^2
Dom3	$S_{31}^{\bar{2}}$	$S_{32}^{\bar{2}}$	$S_{33}^{\bar{2}}$	$S_{34}^{\bar{2}}$	$S_{35}^{\bar{2}}$	$S_{36}^{\bar{2}}$	$S_{37}^{\bar{2}}$	$S_{38}^{\overline{2}}$
Dom4	S_{41}^{2}	S_{42}^{2}	S_{43}^{2}	S_{44}^{2}	S_{45}^{2}	S_{46}^{2}	S_{47}^2	S_{48}^{2}

The Procedure

• Set
$$n_d = n_0$$

► Compute Neyman allocation for domain *d* as:

$$n_{dh} = n_d \frac{N_{dh} S_{dh}}{\sum_{h=1}^H N_{dh} S_{dh}}$$

 Compute expected variance for the estimate of total in domain d as:

$$V\left(\hat{Y}_{d}\right) = \sum_{h=1}^{H} N_{dh}^{2} \frac{\left(1 - \frac{n_{dh}}{N_{dh}}\right)}{n_{dh}} S_{dh}^{2}$$

The Procedure

 Compute expected CV for the estimate of total in domain d as:

$$CV\left(\hat{Y}_{d}\right) = \frac{\sqrt{V\left(\hat{Y}_{d}\right)}}{Y_{d}}$$

- Compare expected CV with required CV
- if $CV\left(\hat{Y}_d\right) > CV^*$: increase sample size for domain d: $n_d := n_d + 1$
- if $CV\left(\hat{Y}_d\right) \leq CV^*$: n_d is the final sample size for domain d.

The Procedure

- ► Iterative procedure
- ► R code

Introduction

Proportions

Sample size relation with $\ensuremath{\mathsf{CV}}$

Sample size for stratified sampling

Conclusions

Resume

- Sample size calculation for SRS if the population parameter is a proportion
- Relationship between sample size, variance and coefficient of variation
- ► Sample size and sample allocation calculation for SSRS

Conclusions

- ► The proposed solutions work only in specific cases
- ► In other cases they may work but may fail as well
- The solutions can be used as a leading information with caution

Thank you!