Big Data

Case studies in Official Statistics

Martijn Tennekes

Special thanks to Piet Daas, Marco Puts, May Offermans, Alex Priem, Edwin de Jonge

From a Official Statistics point of view

Three types of data:

Survey data = data collected by SN with questionnaires

 Admin data = administrative (register) data collected by third parties such as the Tax Office

3. Big data = machine generated data of events

Big Data case studies

Big data = machine generated data of events

Source	Statistics
Social media	Sentiment (as indicator for business cycle)
Mobile phone metadata	Daytime population, tourism statistics
Traffic loops	Traffic index statistics

Big data approach

Case study 1: Social media

- 3 billion messages as of 2009 gathered from Facebook,
 Twitter, LinkedIn, Google+ by a Dutch intermediate
 company Coosto.
- Sentiment per message determined by classifying words as negative or positive.
- Could be used as indicator for the business cycle. Could it be fit to the consumer confidence, the leading business cycle indicator?

Sentiment in social media

Platform specific sentiment

Platform specific results

Table 1. Social media messages properties for various platforms and their correlation with consumer confidence

Social media platform Number of social media messages ¹		Number of messages as percentage of total (%)	Correlation coefficient of monthly sentiment index and consumer confidence $(r)^2$		
All platforms combined	3,153,002,327	100	0.75		
Facebook	334,854,088	10.6	0.81*		
Twitter	2,526,481,479	80.1	0.68		
Hyves	45,182,025	1.4	0.50		
News sites	56,027,686	1.8	0.37		
Blogs	48,600,987	1.5	0.25		
Google+	644,039	0.02	-0.04		
Linkedin	565,811	0.02	-0.23		
Youtube	5,661,274	0.2	-0.37		
Forums	134,98,938	4.3	-0.45		

¹period covered June 2010 untill November 2013

Granger causality reveals that Consumer Confidence precedes Facebook sentiment! (p-value < 0.001)

²confirmed by visual inspecting scatterplots and additional checks (see text)

^{*}cointegrated

Case study 2: mobile phone metadata

- Pilot study with Vodafone, a provider with market share of 1/3 in the Netherlands.
- Aggregated data is queried by intermediate company
 Mezuro and delivered to SN. Privacy is guaranteed!
- Applications: daytime population, tourism statistics, economic activity, mobility studies, etcetera.

Mobile phone population

Subpopulations model

Mobile phone metadata

Event Datail Records (EDR) contain metadata on mobile phone events (i.e. call, SMS or data transfer).

Aggregated table: number of unique devices X time period X current region X residential region.

Hour

Weighting method

Example: suppose there are only 3 regions in the

	Residence			
		Amsterdam	Boskoop	Castricum
Current region at time t	Amsterdam	199,000	1,000	4,000
	Boskoop	500	3,500	0
	Castricum	500	500	16,000

Weighting method (2)

Example: suppose there are only 3 regions in the

	Residence			
		Amsterdam	Boskoop	Castricum
Current region at time t	Amsterdam	199,000	1,000	4,000
	Boskoop	500	3,500	0
	Castricum	500	500	16,000
	MPRD total	800,000	15,000	30,000

Weighting method (3)

Example: suppose there are only 3 regions in the

	Residence			
		Amsterdam	Boskoop	Castricum
Current region at time t	Amsterdam	796,000	3,000	6,000
	Boskoop	2000	10,500	0
	Castricum	2000	1,500	24,000
	MPRD total	800,000	15,000	30,000

Weighting method (4)

Example: suppose there are only 3 regions in the

	Residence				
Current region at time t		Amsterdam	Boskoop	Castricum	DTP total
	Amsterdam	796,000	3,000	6,000	805,000
	Boskoop	2000	10,500	0	12,500
	Castricum	2000	1,500	24,000	27,500
	MPRD total	800,000	15,000	30,000	

Daytime population results

Day time population (relative)

Day time population (relative)

Day time population (relative)

City of Eindhoven and surrounding towns

Day time population - Region profile

K-means clustering

Work = daytime vs. night-time during working weeks

Weekend = weekends activity

Holiday = May holiday activity

Case study 3: Traffic loops

Traffic loop data

- Each minute (24/7) the number of passing vehicles is counted in around 20.000 'loops' in the Netherlands
 - Total and in different length classes

Traffic loops on main roads

Traffic loops on main roads (2)

Traffic loops on main roads (3)

Traffic loops on main roads (4)

Raw data: Total number of vehicles a day

Correct for missing data: macro level

Sliding window of 5 min. Impute missing data.

Total = ~ 295 million detected vehicles

Total = ~ 330 million (+ 12%) detected vehicles

All Dutch vehicles in September

Selectivity of big data

- Big Data sources may be selective when
 - Only part of the population contributes to the data set (e.g. mobile phone owners)
 - The measurement mechanism is selective (e.g. traffic loops placement on Dutch highways is not random)
- Many Big Data sources contain events
 - How to associate events with units?
 - Number of events per unit may vary.
- Correcting for selectivity
 - Background characteristics or *features* are needed (linking with registers; profiling)
 - Use predictive modeling / machine learning to produce population estimates

Questions?

